Isometric actions on spheres with an orbifold quotient

被引:14
|
作者
Gorodski, Claudio [1 ]
Lytchak, Alexander [2 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Cologne, Math Inst, Weyertal 86-90, D-50931 Cologne, Germany
基金
巴西圣保罗研究基金会;
关键词
MANIFOLDS; REPRESENTATIONS; FOLIATIONS; GEOMETRY; SPACES;
D O I
10.1007/s00208-015-1304-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify representations of compact connected Lie groups whose induced action on the unit sphere has the orbit space isometric to a Riemannian orbifold.
引用
收藏
页码:1041 / 1067
页数:27
相关论文
共 19 条
  • [1] Euclidean hypersurfaces isometric to spheres
    Li, Yanlin
    Bin Turki, Nasser
    Deshmukh, Sharief
    Belova, Olga
    AIMS MATHEMATICS, 2024, 9 (10): : 28306 - 28319
  • [2] Isometric rigidity of Wasserstein tori and spheres
    Geher, Gyorgy Pal
    Titkos, Tamas
    Virosztek, Daniel
    MATHEMATIKA, 2023, 69 (01) : 20 - 32
  • [3] Partial actions on quotient spaces and globalization
    Martinez, Luis
    Pinedo, Hector
    Villamizar, Andres
    APPLIED GENERAL TOPOLOGY, 2024, 25 (01): : 125 - 141
  • [4] Cohomogeneity Two Nonsemisimple Isometric Actions
    Mirzaie, Reza
    Bakhtiari, Marzie
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (02) : 585 - 593
  • [5] ONE-FIXED-POINT ACTIONS ON SPHERES AND SMITH SETS
    Morimoto, Masaharu
    OSAKA JOURNAL OF MATHEMATICS, 2016, 53 (04) : 1003 - 1013
  • [6] On free Zp actions on products of spheres
    Thatcher, Courtney M.
    GEOMETRIAE DEDICATA, 2010, 148 (01) : 391 - 415
  • [7] EXAMPLES OF FREE ACTIONS ON PRODUCTS OF SPHERES
    Hambleton, Ian
    Unlu, Ozgun
    QUARTERLY JOURNAL OF MATHEMATICS, 2009, 60 (04) : 461 - 474
  • [8] Isometric group actions and the cohomology of flat fiber bundles
    Banagl, Markus
    GROUPS GEOMETRY AND DYNAMICS, 2013, 7 (02) : 293 - 321
  • [9] Constructing Homologically Trivial Actions on Products of Spheres
    Unlu, Ozgun
    Yalcin, Ergun
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (03) : 927 - 945
  • [10] A Spectral Sequence for Locally Free Isometric Lie Group Actions
    Razny, Pawel
    TRANSFORMATION GROUPS, 2024,