Tumour-benign classification of PET-MRI radiomic features in prostate cancer patients with machine learning approaches

被引:0
|
作者
Papp, L. [1 ]
Grahovac, M. [1 ]
Spielvogel, C. P. [1 ]
Agha, R. [1 ]
Mohamad, D. [1 ]
Hamboeck, M. [1 ]
Kenner, L. [1 ]
Beyer, T. [1 ]
Hacker, M. [1 ]
Hartenbach, M. [1 ]
机构
[1] Med Univ Vienna, Vienna, Austria
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
EP-1042
引用
收藏
页码:S727 / S728
页数:2
相关论文
共 50 条
  • [41] Application of a Machine Learning Approach for the Analysis of Clinical and Radiomic Features of Pretreatment [18F]-FDG PET/CT to Predict Prognosis of Patients with Endometrial Cancer
    Masatoyo Nakajo
    Megumi Jinguji
    Atsushi Tani
    Hidehiko Kikuno
    Daisuke Hirahara
    Shinichi Togami
    Hiroaki Kobayashi
    Takashi Yoshiura
    Molecular Imaging and Biology, 2021, 23 : 756 - 765
  • [42] Classification of breast cancer patients using somatic mutation profiles and machine learning approaches
    Vural, Suleyman
    Wang, Xiaosheng
    Guda, Chittibabu
    BMC SYSTEMS BIOLOGY, 2016, 10
  • [43] Radiomic features of skeletal muscle on prostate T1-Weighted MRI associated with MACE outcomes in prostate cancer patients undergoing hormonal therapy
    Kunhiraman, Harikrishnan Hyma
    Shiradkar, Rakesh
    Yerraguntla, Sandeep
    Gopu, Gaurav
    Joseph, Stanley
    Jiang, Stephanie
    Makram, Omar
    Weintraub, Neal
    Mittal, Pardeep
    Patel, Sagar
    Modanwal, Gourav
    Setiadi, Natasha
    Li, Liping
    Madabhushi, Anant
    Guha, Avirup
    CIRCULATION, 2024, 150
  • [44] Machine learning based on ct radiomic features predicts residual tumor in head and neck cancer patients treated with chemoradiotherapy
    Florez E.
    Thomas T.V.
    Howard C.M.
    Khosravi H.R.
    Lirette S.T.
    Fatemi A.
    Biomedical Sciences Instrumentation, 2021, 57 (02) : 199 - 211
  • [45] Radiomic Features from PSMA PET for Intraprostatic Tumor Discrimination and Characterization in Patients with Prostate Cancer. a Comparison Study with Histology Reference
    Zamboglou, C.
    Carles, M.
    Fechter, T.
    Fassbender, T.
    Ruf, J.
    Bronsert, P.
    Koeber, G.
    Jilg, C. A.
    Baltas, D.
    Mix, M.
    Grosu, A.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : E316 - E316
  • [46] The usefulness of machine- learning- based evaluation of clinical and pretreatment 18F-FDG-PET/CT radiomic features for predicting prognosis in patients with laryngeal cancer
    Nakajo, Masatoyo
    Nagano, Hiromi
    Jinguji, Megumi
    Kamimura, Yoshiki
    Masuda, Keiko
    Takumi, Koji
    Tani, Atsushi
    Hirahara, Daisuke
    Kariya, Keisuke
    Yamashita, Masaru
    Yoshiura, Takashi
    BRITISH JOURNAL OF RADIOLOGY, 2023, 96 (1149):
  • [47] Comparison of machine learning-driven lesion classifiers in PET/MR images of prostate cancer patients
    Papp, L.
    Spielvogel, C. P.
    Grahovac, M.
    Beyer, T.
    Hacker, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (SUPPL 1) : S253 - S254
  • [48] Evaluation of Machine Learning Classification Models for False-Positive Reduction in Prostate Cancer Detection Using MRI Data
    Rippa, Malte
    Schulze, Ruben
    Kenyon, Georgia
    Himstedt, Marian
    Kwiatkowski, Maciej
    Grobholz, Rainer
    Wyler, Stephen
    Cornelius, Alexander
    Schindera, Sebastian
    Burn, Felice
    DIAGNOSTICS, 2024, 14 (15)
  • [49] Radiomics based Machine Learning Models for Classification of Prostate Cancer Grade Groups from Multi Parametric MRI Images
    Zandie, Fatemeh
    Salehi, Mohammad
    Maziar, Asghar
    Bayatiani, Mohammad Reza
    Paydar, Reza
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2024, 14 (12):
  • [50] Inter- and Intra-Patient Repeatability of Radiomic Features from Multiparametric Whole-Body MRI in Patients with Metastatic Prostate Cancer
    Donners, Ricardo
    Candito, Antonio
    Rata, Mihaela
    Sharp, Adam
    Messiou, Christina
    Koh, Dow-Mu
    Tunariu, Nina
    Blackledge, Matthew D.
    CANCERS, 2024, 16 (09)