Tumour-benign classification of PET-MRI radiomic features in prostate cancer patients with machine learning approaches

被引:0
|
作者
Papp, L. [1 ]
Grahovac, M. [1 ]
Spielvogel, C. P. [1 ]
Agha, R. [1 ]
Mohamad, D. [1 ]
Hamboeck, M. [1 ]
Kenner, L. [1 ]
Beyer, T. [1 ]
Hacker, M. [1 ]
Hartenbach, M. [1 ]
机构
[1] Med Univ Vienna, Vienna, Austria
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
EP-1042
引用
收藏
页码:S727 / S728
页数:2
相关论文
共 50 条
  • [1] Evaluation of primary prostate pathologies by large-scale analysis of non-invasive PET-MRI features with Machine-Learning approaches
    Papp, L.
    Hartenbach, S.
    Duhovic, A.
    Baltzer, P.
    Rausch, I.
    Beyer, T.
    Susani, M.
    Kenner, L.
    Seitz, C.
    Shariat, S.
    Hacker, M.
    Hartenbach, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 : S150 - S151
  • [2] Prostate Gleason Score Detection by Calibrated Machine Learning Classification through Radiomic Features
    Mercaldo, Francesco
    Brunese, Maria Chiara
    Merolla, Francesco
    Rocca, Aldo
    Zappia, Marcello
    Santone, Antonella
    APPLIED SCIENCES-BASEL, 2022, 12 (23):
  • [3] MRI-Based Surrogate Imaging Markers of Aggressiveness in Prostate Cancer: Development of a Machine Learning Model Based on Radiomic Features
    Dominguez, Ignacio
    Rios-Ibacache, Odette
    Caprile, Paola
    Gonzalez, Jose
    San Francisco, Ignacio F.
    Besa, Cecilia
    DIAGNOSTICS, 2023, 13 (17)
  • [4] Distribution of prostate specific membrane antigen (PSMA) on PET-MRI in patients with and without ovarian cancer
    Sadowski, Elizabeth A. A.
    Lees, Brittany
    McMillian, Alan B. B.
    Kusmirek, Joanna E. E.
    Cho, Steve Y. Y.
    Barroilhet, Lisa M. M.
    ABDOMINAL RADIOLOGY, 2023, 48 (12) : 3643 - 3652
  • [5] Distribution of prostate specific membrane antigen (PSMA) on PET-MRI in patients with and without ovarian cancer
    Elizabeth A. Sadowski
    Brittany Lees
    Alan B. McMillian
    Joanna E. Kusmirek
    Steve Y. Cho
    Lisa M. Barroilhet
    Abdominal Radiology, 2023, 48 : 3643 - 3652
  • [6] Utility of radiomic zones for risk classification and clinical outcome predictions using supervised machine learning during simultaneous 11C-choline PET/MRI acquisition in prostate cancer patients
    Tu, Shu-Ju
    Tran, Vuong T.
    Teo, Jian M.
    Chong, Wen C.
    Tseng, Jing-Ren
    MEDICAL PHYSICS, 2021, 48 (09) : 5192 - 5201
  • [7] Multiple Kernel Learning applied to the prediction of prostate cancer recurrence from MRI radiomic features
    Marin-Castrillon, Diana M.
    Fontaine, Pierre
    Gnep, Khemara
    de Crevoisier, Renaud
    Diaz, Gloria M.
    Acosta, Oscar
    2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2019, : 984 - 988
  • [8] Breast Cancer Classification: Features Investigation Using Machine Learning Approaches
    Mashudi, Nurul Amirah
    Rossli, Syaidathul Amaleena
    Ahmad, Norulhusna
    Noor, Norliza Mohd
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2021, 13 (05): : 107 - 118
  • [9] A method for the automated classification of benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features
    Sakai, Ayaka
    Onishi, Yuya
    Matsui, Misaki
    Adachi, Hidetoshi
    Teramoto, Atsushi
    Saito, Kuniaki
    Fujita, Hiroshi
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2020, 13 (01) : 27 - 36
  • [10] A method for the automated classification of benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features
    Ayaka Sakai
    Yuya Onishi
    Misaki Matsui
    Hidetoshi Adachi
    Atsushi Teramoto
    Kuniaki Saito
    Hiroshi Fujita
    Radiological Physics and Technology, 2020, 13 : 27 - 36