Faithfullness of Geometric Action of Skein Algebras

被引:1
作者
Le, Thang T. Q. [1 ]
机构
[1] Georgia Tech, Sch Math, 686 Cherry St, Atlanta, GA 30332 USA
关键词
Kauffman bracket skein module; Geometric action; REPRESENTATIONS; MODULES; QUANTIZATION; INVARIANTS;
D O I
10.1007/s40306-021-00448-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the action of the Kauffman bracket skein algebra of a surface sigma on the skein module of the handlebody bounded by sigma is faithful if and only if the quantum parameter is not a root of 1.
引用
收藏
页码:279 / 291
页数:13
相关论文
共 30 条
[1]   3-MANIFOLD INVARIANTS DERIVED FROM THE KAUFFMAN BRACKET [J].
BLANCHET, C ;
HABEGGER, N ;
MASBAUM, G ;
VOGEL, P .
TOPOLOGY, 1992, 31 (04) :685-699
[2]   Representations of the Kauffman bracket skein algebra III: closed surfaces and naturality [J].
Bonahon, Francis ;
Wong, Helen .
QUANTUM TOPOLOGY, 2019, 10 (02) :325-398
[3]   Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations [J].
Bonahon, Francis ;
Wong, Helen .
INVENTIONES MATHEMATICAE, 2016, 204 (01) :195-243
[4]   Quantum traces for representations of surface groups in SL2(C) [J].
Bonahon, Francis ;
Wong, Helen .
GEOMETRY & TOPOLOGY, 2011, 15 (03) :1569-1615
[5]   Rings of SL2(C)-characters and the Kauffman bracket skein module [J].
Bullock, D .
COMMENTARII MATHEMATICI HELVETICI, 1997, 72 (04) :521-542
[6]  
Cooke J, 2020, ARXIV200812695
[7]  
Costantino F., 2019, J EMS
[8]   A quantum Teichmuller space [J].
Fock, VV ;
Chekhov, LO .
THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 120 (03) :1245-1259
[9]   Cluster algebras and triangulated surfaces. Part I: Cluster complexes [J].
Fomin, Sergey ;
Shapiro, Michael ;
Thurston, Dylan .
ACTA MATHEMATICA, 2008, 201 (01) :83-146
[10]   Skein modules and the noncommutative torus [J].
Frohman, C ;
Gelca, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (10) :4877-4888