Conceptual Design and Analysis of Hydrocarbon-Based Solar Thermal Power and Ejector Cooling Systems in Hot Climates

被引:43
作者
Zhang, TieJun [1 ]
Mohamed, Saleh [1 ]
机构
[1] Masdar Inst Sci & Technol, Dept Mech & Mat Engn, Abu Dhabi, U Arab Emirates
来源
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME | 2015年 / 137卷 / 02期
关键词
Cooling systems - Rankine cycle - Solar heating - Thermodynamic properties - Phase transitions - Ejectors (pumps) - Solar thermal energy - Refrigerants - Sustainable development;
D O I
10.1115/1.4028365
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A combined thermal power and ejector refrigeration cooling cycle is proposed in this paper to harness low-grade solar energy. It explores the possibility of utilizing abundant and low-cost hydrocarbon as the working fluid. Hydrocarbon fluid has been identified as a promising alternative to existing high global-warming-potential (GWP) refrigerants (i.e., HFCs) in next-generation cooling and organic thermal power systems. Several typical alternative refrigerants are evaluated by considering their fundamental thermophysical properties: absolute pressure level, volumetric cooling capacity, surface tension, saturated liquid/vapor density ratio, and kinematic viscosity. Comparing with R1234yf, R1234ze, and R744 (CO2), hydrocarbon refrigerants, such as R290 (propane) and R601 (pentane), do have inherent advantages for either cooling or power generation purposes in hot climates. Fundamental phase stability and transition issues have been considered in designing hydrocarbon ejectors for combined power and cooling cycles operating at high ambient temperature. Thermodynamic energy and exergy analysis has indicated that the proposed stand-alone solar thermal system offers an effective way to sustainable energy production in hot and dry climates.
引用
收藏
页数:9
相关论文
共 22 条
[1]   Status of enhanced heat transfer in systems with natural refrigerants [J].
Ayub Z. .
Journal of Thermal Science and Engineering Applications, 2010, 2 (04)
[2]   Innovation in concentrated solar power [J].
Barlev, David ;
Vidu, Ruxandra ;
Stroeve, Pieter .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (10) :2703-2725
[3]  
Carey V.P., 2008, LIQUID VAPOR PHASE C, VSecond
[4]   Vapor compression refrigeration cycle for electronics cooling - Part I: Dynamic modeling and experimental validation [J].
Catano, Juan ;
Zhang, Tiejun ;
Wen, John T. ;
Jensen, Michael K. ;
Peles, Yoav .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 66 :911-921
[5]   Recent developments in ejector refrigeration technologies [J].
Chen, Xiangjie ;
Omer, Siddig ;
Worall, Mark ;
Riffat, Saffa .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 19 :629-651
[6]   Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications [J].
Elbel, Stefan .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2011, 34 (07) :1545-1561
[7]   Prediction of condensation in steam ejector for a refrigeration system [J].
Grazzini, Giuseppe ;
Milazzo, Adriano ;
Piazzini, Samuele .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2011, 34 (07) :1641-1648
[8]   Study of a solar booster assisted ejector refrigeration system with R134a [J].
Hernández, JI ;
Best, R ;
Dorantes, RJ ;
Estrada, CA .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2005, 127 (01) :53-59
[9]   A 1-D analysis of ejector performance [J].
Huang, BJ ;
Chang, JM ;
Wang, CP ;
Petrenko, VA .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 1999, 22 (05) :354-364
[10]   An Experimental Investigation of Steam Ejector Refrigeration Systems [J].
Dong, Jingming ;
Pounds, D.A. ;
Cheng, P. ;
Ma, H.B. .
Journal of Thermal Science and Engineering Applications, 2012, 4 (03)