Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs

被引:6
作者
Milovanovic, Igor [1 ]
Milovanovic, Emina [1 ]
Matejic, Marjan [1 ]
Altindag, S. B. Bozkurt [2 ]
机构
[1] Univ Nis, Fac Elect Engn, Nish, Serbia
[2] Yenikent Kardelen Konutlari, TR-42070 Konya, Turkey
关键词
Normalized Laplacian; eigenvalues; bipartite graphs; INCIDENCE ENERGY;
D O I
10.22049/CCO.2021.26987.1173
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V,E), V = {v(1),v(2),...,v(n)}, be a simple connected graph with n vertices, m edges and a sequence of vertex degrees d(1) >= d(2) >= ... >= d(n) > 0, d(i) = d(v(i)). Let A = (a(ij))(nxn) and D = diag(d(1),d(2),...,d(n)) be the adjacency and the diagonal degree matrix of G, respectively. Denote by L+(G) = D-1/2(D+A)D-1/2 the normalized signless Laplacian matrix of graph G. The eigenvalues of matrix L+(G), 2 - gamma(+)(1) >= gamma(+)(2) >= ... >= gamma(+)(n) = 0, are normalized signless Laplacian eigenvalues of G. In this paper some bounds for the sum K+(G) = Sigma(n)(i=1)1/gamma(+)(i) are considered.
引用
收藏
页码:259 / 271
页数:13
相关论文
共 22 条
[1]  
[Anonymous], 1980, SPECTRA GRAPHS THEOR
[2]  
[Anonymous], [No title captured]
[3]  
Bozkurt Altindag B., 2021, Bull. Int. Math. Virtual Inst., V11, P135, DOI [10.7251/BIMVI2101135A, DOI 10.7251/BIMVI2101135A]
[4]  
Bozkurt Altindag B., 2019, Mathematics Interdisciplinary Research, V4, P171, DOI [10.22052/mir.2019.208991.1180, DOI 10.22052/MIR.2019.208991.1180]
[5]  
Bozkurt SB, 2010, MATCH-COMMUN MATH CO, V64, P239
[6]  
Butler S, 2016, IMA VOL MATH APPL, V159, P295, DOI 10.1007/978-3-319-24298-9_13
[7]   On the normalized Laplacian energy and general Randic index R_1 of graphs [J].
Cavers, Michael ;
Fallat, Shaun ;
Kirkland, Steve .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (01) :172-190
[8]   The normalized incidence energy of a graph [J].
Cheng, Bo ;
Liu, Bolian .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) :4510-4519
[9]  
Das KC, 2015, ARS COMBINATORIA, V118, P143
[10]   Relationships between Randic index and other topological indices [J].
Du, Z. ;
Jahanbani, A. ;
Sheikholeslami, S. M. .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (01) :137-154