KKM mappings in metric type spaces

被引:209
作者
Khamsi, M. A. [1 ,2 ]
Hussain, N. [3 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[3] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
关键词
KKM property; Fixed point; Cone metric space; Admissible set; Totally bounded; Approximate fixed point property; FIXED-POINT THEOREMS; PROPERTY;
D O I
10.1016/j.na.2010.06.084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we discuss some recent results about KKM mappings in cone metric spaces. We also discuss the fixed point existence results of multivalued mappings defined on such metric spaces. In particular we show that most of the new results are merely copies of the classical ones and do not necessitate the underlying Banach space nor the associated cone. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3123 / 3129
页数:7
相关论文
共 17 条
[11]   Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings" [J].
Rezapour, Sh. ;
Hamlbarani, R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) :719-724
[12]   ADDITION OF AN IDENTITY TO AN ORDERED BANACH-SPACE [J].
ROBINSON, DW ;
YAMAMURO, S .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1983, 35 (OCT) :200-210
[13]  
Rzepecki B., 1980, Publ. Inst. Math., V28, P179
[14]   Cone metric spaces and fixed point theorems in diametrically contractive mappings [J].
Turkoglu, Duran ;
Abuloha, Muhib .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (03) :489-496
[15]   KKM mappings in cone metric spaces and some fixed point theorems [J].
Turkoglu, Duran ;
Abuloha, Muhib ;
Abdeljawad, Thabet .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (01) :348-353
[16]   COMMON FIXED POINTS IN CONE METRIC SPACES [J].
Vetro, Pasquale .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2007, 56 (03) :464-468
[17]   Fixed point theorems of upper semicontinuous multivalued mappings with applications in hyperconvex metric spaces [J].
Wu, XA ;
Thompson, B ;
Yuan, GX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (01) :80-89