Dysbiosis signatures of gut microbiota in coronary artery disease

被引:170
作者
Zhu, Qi [1 ,3 ]
Gao, Renyuan [1 ,3 ]
Zhang, Yi [2 ]
Pan, Dengdeng [1 ,3 ]
Zhu, Yefei [1 ,3 ]
Zhang, Xiaohui [1 ,3 ]
Yang, Rong [4 ]
Jiang, Rong [2 ]
Xu, Yawei [2 ]
Qin, Huanlong [1 ,3 ]
机构
[1] Tongji Univ, Sch Med, Shanghai Peoples Hosp 10, Dept Gastroenterol, Shanghai, Peoples R China
[2] Tongji Univ, Sch Med, Shanghai Peoples Hosp 10, Dept Cardiol, Shanghai, Peoples R China
[3] Tongji Univ, Sch Med, Inst Intestinal Dis, Shanghai, Peoples R China
[4] Tongji Univ, Sch Med, Shanghai Peoples Hosp 10, Dept Pediat, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
coronary artery disease; diagnostic model; dysbiosis signatures; function alteration; microbial network; LIPOPOLYSACCHARIDE-BINDING PROTEIN; CARDIOVASCULAR-DISEASE; TRANSLOCATION; METABOLISM; PHYSIOLOGY; BACTERIA; EVENTS; HEALTH;
D O I
10.1152/physiolgenomics.00070.2018
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Gut microbiota dysbiosis has been considered to be an important risk factor that contributes to coronary artery disease (CAD), but limited evidence exists about the involvement of gut microbiota in the disease. Our study aimed to characterize the dysbiosis signatures of gut microbiota in coronary artery disease. The gut microbiota represented in stool samples were collected from 70 patients with coronary artery disease and 98 healthy controls. 16S rRNA sequencing was applied, and bioinformatics methods were used to decipher taxon signatures and function alteration, as well as the microbial network and diagnostic model of gut microbiota in coronary artery disease. Gut microbiota showed decreased diversity and richness in patients with coronary artery disease. The composition of the microbial community changed; Escherichia-Shigella [false discovery rate (FDR = 7.5*10(-5)] and Enterococcus (FDR = 2.08*10(-7)) were significant enriched, while Faecalibacterium (FDR = 6.19*10(-6)), Subdoligranulum (FDR = 1.63*10(-6)). Roseburia (FDR = 1.95*10(-9)), and Eubacterium rectale (FDR = 2.35*10(-4)) were significant depleted in the CAD group. Consistent with the taxon changes, functions such as amino acid metabolism, phosphotransferase system, propanoate metabolism. lipopolysaccharide biosynthesis, and protein and tryptophan metabolism were found to be enhanced in CAD patients. The microbial network revealed that Faecalibacterium and Escherichia-Shigella were the microbiotas that dominated in the healthy control and CAD groups, respectively. The microbial diagnostic model based on random forest also showed probability in identifying those who suffered from CAD. Our study successfully identities the dysbiosis signature, dysfunctions, and comprehensive networks of gut microbiota in CAD patients. Thus. modulation targeting the gut microbiota may be a novel strategy for CAD treatment.
引用
收藏
页码:893 / 903
页数:11
相关论文
共 43 条
[11]   Lipopolysaccharide-binding protein is a negative regulator of adipose tissue browning in mice and humans [J].
Gavalda-Navarro, Aleix ;
Moreno-Navarrete, Jose M. ;
Quesada-Lopez, Tania ;
Cairo, Montserrat ;
Giralt, Marta ;
Fernandez-Real, Jose M. ;
Villarroya, Francesc .
DIABETOLOGIA, 2016, 59 (10) :2208-2218
[12]   ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation [J].
Hashimoto, Tatsuo ;
Perlot, Thomas ;
Rehman, Ateequr ;
Trichereau, Jean ;
Ishiguro, Hiroaki ;
Paolino, Magdalena ;
Sigl, Verena ;
Hanada, Toshikatsu ;
Hanada, Reiko ;
Lipinski, Simone ;
Wild, Birgit ;
Camargo, Simone M. R. ;
Singer, Dustin ;
Richter, Andreas ;
Kuba, Keiji ;
Fukamizu, Akiyoshi ;
Schreiber, Stefan ;
Clevers, Hans ;
Verrey, Francois ;
Rosenstiel, Philip ;
Penninger, Josef M. .
NATURE, 2012, 487 (7408) :477-U89
[13]   The gut microbiome in atherosclerotic cardiovascular disease [J].
Jie, Zhuye ;
Xia, Huihua ;
Zhong, Shi-Long ;
Feng, Qiang ;
Li, Shenghui ;
Liang, Suisha ;
Zhong, Huanzi ;
Liu, Zhipeng ;
Gao, Yuan ;
Zhao, Hui ;
Zhang, Dongya ;
Su, Zheng ;
Fang, Zhiwei ;
Lan, Zhou ;
Li, Junhua ;
Xiao, Liang ;
Li, Jun ;
Li, Ruijun ;
Li, Xiaoping ;
Li, Fei ;
Ren, Huahui ;
Huang, Yan ;
Peng, Yangqing ;
Li, Guanglei ;
Wen, Bo ;
Dong, Bo ;
Chen, Ji-Yan ;
Geng, Qing-Shan ;
Zhang, Zhi-Wei ;
Yang, Huanming ;
Wang, Jian ;
Wang, Jun ;
Zhang, Xuan ;
Madsen, Lise ;
Brix, Susanne ;
Ning, Guang ;
Xu, Xun ;
Liu, Xin ;
Hou, Yong ;
Jia, Huijue ;
He, Kunlun ;
Kristiansen, Karsten .
NATURE COMMUNICATIONS, 2017, 8
[14]   Gut Microbiota Promote Angiotensin II-Induced Arterial Hypertension and Vascular Dysfunction [J].
Karbach, Susanne H. ;
Schonfelder, Tanja ;
Brandao, Ines ;
Wilms, Eivor ;
Hormann, Nives ;
Jackel, Sven ;
Schuler, Rebecca ;
Finger, Stefanie ;
Knorr, Maike ;
Lagrange, Jeremy ;
Brandt, Moritz ;
Waisman, Ari ;
Kossmann, Sabine ;
Schafer, Katrin ;
Munzel, Thomas ;
Reinhardt, Christoph ;
Wenzel, Philip .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2016, 5 (09)
[15]   Symptomatic atherosclerosis is associated with an altered gut metagenome [J].
Karlsson, Fredrik H. ;
Fak, Frida ;
Nookaew, Intawat ;
Tremaroli, Valentina ;
Fagerberg, Bjorn ;
Petranovic, Dina ;
Backhed, Fredrik ;
Nielsen, Jens .
NATURE COMMUNICATIONS, 2012, 3
[16]   The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity [J].
Kasselman, Lora J. ;
Vernice, Nicholas A. ;
DeLeon, Joshua ;
Reiss, Allison B. .
ATHEROSCLEROSIS, 2018, 271 :203-213
[17]   Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis [J].
Koeth, Robert A. ;
Wang, Zeneng ;
Levison, Bruce S. ;
Buffa, Jennifer A. ;
Org, Elin ;
Sheehy, Brendan T. ;
Britt, Earl B. ;
Fu, Xiaoming ;
Wu, Yuping ;
Li, Lin ;
Smith, Jonathan D. ;
DiDonato, Joseph A. ;
Chen, Jun ;
Li, Hongzhe ;
Wu, Gary D. ;
Lewis, James D. ;
Warrier, Manya ;
Brown, J. Mark ;
Krauss, Ronald M. ;
Tang, W. H. Wilson ;
Bushman, Frederic D. ;
Lusis, Aldons J. ;
Hazen, Stanley L. .
NATURE MEDICINE, 2013, 19 (05) :576-585
[18]   From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites [J].
Koh, Ara ;
De Vadder, Filipe ;
Kovatcheva-Datchary, Petia ;
Backhed, Fredrik .
CELL, 2016, 165 (06) :1332-1345
[19]   The Microbiome and Risk for Atherosclerosis [J].
Komaroff, Anthony L. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (23) :2381-2382
[20]   Human microbiome as therapeutic intervention target to reduce cardiovascular disease risk [J].
Koopen, Annefleur M. ;
Groen, Albert K. ;
Nieuwdorp, Max .
CURRENT OPINION IN LIPIDOLOGY, 2016, 27 (06) :615-622