Overexpression of the Na+/Ca2+ exchanger and inhibition of the sarcoplasmic reticulum Ca2+-ATPase in ventricular myocytes from transgenic mice

被引:39
作者
Terracciano, CMN
Philipson, KD
MacLeod, KT
机构
[1] Univ London Imperial Coll Sci Technol & Med, Sch Med, NHLI, London SW3 6LY, England
[2] Univ Calif Los Angeles, Dept Physiol & Med, Los Angeles, CA 90024 USA
关键词
Na/Ca-exchanger; SR (function); myocytes; calcium (cellular); e-c coupling;
D O I
10.1016/S0008-6363(00)00205-4
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Myocytes from failing hearts produce slower and smaller Ca2+ transients associated with reduction in expression of sarcoplasmic reticulum (SR) Ca2+ ATPase and an overexpression of Na+/Ca2+ exchanger. Since the physiological role of both these proteins is competing for, and removing, Ca2+ from the cytoplasm, overexpression of the exchanger may compensate for less effective SR Ca2+ uptake. This study demonstrates this compensatory effect and provides a quantitative description of the results, Methods: Ventricular myocytes from transgenic mice overexpressing the Na+/Ca2+ exchanger (TR) and nontransgenic littermates (NON) were used. Cell shortening, cytoplasmic [Ca] (using indo-1 AM) and electrophysiological parameters were monitored. Results: TR myocytes displayed faster Ca2+ transients and twitches compared with NON myocytes. Superfusion with thapsigargin prolonged the time-course of Ca2+ transients of TR myocytes until these were equal to the ones measured in NON myocytes. The amount of SR Ca2+-ATPase (SERCA) inhibition needed to obtain such transients was calculated as a function of V-max for the Ca2+ flux via SERCA and found to be 28%. In TR myocytes V-max for the Ca2+ flux via Na+/Ca2+ exchange was 240% of NON myocytes. When Ca2+ transients in TR myocytes were slowed by thapsigargin to similar values to the ones recorded in NON myocytes, SR Ca2+ content was also correspondingly reduced. Conclusions: The results suggest that in pathophysiological conditions where there is a reduction in SERCA function, overexpression of Na+/Ca2+ exchanger can compensate and allow normal Ca2+ homeostasis to be maintained. In mouse ventricular myocytes a 2.4-fold increase in Na+/Ca2+ exchange activity compensates for a reduction in SERCA function by 28% so maintaining the duration of the Ca2+ transient. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:38 / 47
页数:10
相关论文
共 37 条
[1]   Calcium signaling in transgenic mice overexpressing cardiac Na+-Ca2+ exchanger [J].
AdachiAkahane, S ;
Lu, LY ;
Li, ZP ;
Frank, JS ;
Philipson, KD ;
Morad, M .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 109 (06) :717-729
[2]   INTRACELLULAR CALCIUM HOMEOSTASIS IN CARDIAC MYOCYTES [J].
BARRY, WH ;
BRIDGE, JHB .
CIRCULATION, 1993, 87 (06) :1806-1815
[3]   RELAXATION IN RABBIT AND RAT CARDIAC-CELLS - SPECIES-DEPENDENT DIFFERENCES IN CELLULAR MECHANISMS [J].
BASSANI, JWM ;
BASSANI, RA ;
BERS, DM .
JOURNAL OF PHYSIOLOGY-LONDON, 1994, 476 (02) :279-293
[4]   RATE OF DIASTOLIC CA RELEASE FROM THE SARCOPLASMIC-RETICULUM OF INTACT RABBIT AND RAT VENTRICULAR MYOCYTES [J].
BASSANI, RA ;
BERS, DM .
BIOPHYSICAL JOURNAL, 1995, 68 (05) :2015-2022
[5]   INTRINSIC CYTOSOLIC CALCIUM BUFFERING PROPERTIES OF SINGLE-RAT CARDIAC MYOCYTES [J].
BERLIN, JR ;
BASSANI, JWM ;
BERS, DM .
BIOPHYSICAL JOURNAL, 1994, 67 (04) :1775-1787
[6]   KINETICS OF [CA](I) DECLINE IN CARDIAC MYOCYTES DEPEND ON PEAK [CA](I) [J].
BERS, DM ;
BERLIN, JR .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1995, 268 (01) :C271-C277
[7]  
BERS DM, 1991, EXCITATION CONTRACTI
[8]   Steady-state twitch Ca2+ fluxes and cytosolic Ca2+ buffering in rabbit ventricular myocytes [J].
Delbridge, LMD ;
Bassani, JWM ;
Bers, DM .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1996, 270 (01) :C192-C199
[9]   The sarcoplasmic reticulum and the Na+Ca2+ exchanger both contribute to the Ca2+ transient of failing human ventricular myocytes [J].
Dipla, K ;
Mattiello, JA ;
Margulies, KB ;
Jeevanandam, V ;
Houser, SR .
CIRCULATION RESEARCH, 1999, 84 (04) :435-444
[10]  
FABIATO A, 1983, AM J PHYSIOL, V245, P1