In vitro circulation model driven by tissue-engineered dome-shaped cardiac tissue

被引:3
|
作者
Kikuchi, Tetsutaro [1 ]
Matsuura, Katsuhisa [1 ]
Shimizu, Tatsuya [1 ]
机构
[1] Tokyo Womens Med Univ TWIns, Inst Adv Biomed Engn & Sci, Shinjuku Ku, 8-1 Kawada Cho, Tokyo 1628666, Japan
关键词
cell sheet technology; induced pluripotent stem cell; cardiomyocyte; tissue engineering; organ on a chip; drug screening; CELL-DERIVED CARDIOMYOCYTES; RISK-ASSESSMENT; CONSTRUCTION; FABRICATION; MATURATION; PLATFORM; COLLAGEN;
D O I
10.1088/1758-5090/ac77c1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The heart is an essential organ for animals and humans. With the increased availability of pluripotent stem cells, the use of three-dimensional cardiac tissues consisting of cultured cardiomyocytes in in vitro drug evaluation has been widely studied. Several models have been proposed for the realization of the pump function, which is the original function of the heart. However, there are no models that simulate the human circulatory system using cultured cardiac tissue. This study shows that a dome-shaped cardiac tissue fabricated using the cell sheet stacking technique can achieve a heart-like pump function and circulate culture medium, there by mimicking the human circulatory system. Firstly, human induced pluripotent stem cells were differentiated into autonomously beating cardiomyocytes, and cardiomyocyte cell sheets were created using temperature-responsive culture dishes. A cardiomyocyte sheet and a human dermal fibroblast sheet were stacked using a cell sheet manipulator. This two-layered cell sheet was then inflated to create a dome-shaped cardiac tissue with a base diameter of 8 mm. The volume of the dome-shaped cardiac tissue changed according to the autonomous beating. The stroke volume increased with the culture period and reached 21 +/- 8.9 mu l (n = 6) on day 21. It also responded to beta-stimulant and extracellular calcium concentrations. Internal pressure fluctuations were also recorded under isovolumetric conditions by dedicated culture devices. The peak heights of pulsatile pressure were 0.33 +/- 0.048 mmHg (n = 3) under a basal pressure of 0.5 mmHg on day 19. When the tissue was connected to a flow path that had check valves applied, it drove a directional flow with an average flow rate of approximately 1 mu l s(-1). Furthermore, pressure-volume (P-V) diagrams were created from the simultaneous measurement of changes in pressure and volume under three conditions of fluidic resistance. In conclusion, this cardiac model can potentially be used for biological pumps that drive multi-organ chips and for more accurate in vitro drug evaluation using P-V diagrams.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Tissue-engineered aneurysm models for in vitro assessment of neurovascular devices
    Shen, Tiffany W.
    Puccini, Brandon
    Temnyk, Kristen
    Herting, Scott
    Cardinal, Kristen O'Halloran
    NEURORADIOLOGY, 2019, 61 (06) : 723 - 732
  • [22] Functional Consequences of a Tissue-Engineered Myocardial Patch for Cardiac Repair in a Rat Infarct Model
    Wendel, Jacqueline S.
    Ye, Lei
    Zhang, Pengyuan
    Tranquillo, Robert T.
    Zhang, Jianyi Jay
    TISSUE ENGINEERING PART A, 2014, 20 (7-8) : 1325 - 1335
  • [23] Tissue-engineered aneurysm models for in vitro assessment of neurovascular devices
    Tiffany W. Shen
    Brandon Puccini
    Kristen Temnyk
    Scott Herting
    Kristen O’Halloran Cardinal
    Neuroradiology, 2019, 61 : 723 - 732
  • [24] Benchmarking in vitro tissue-engineered blood–brain barrier models
    Jackson G. DeStefano
    John J. Jamieson
    Raleigh M. Linville
    Peter C. Searson
    Fluids and Barriers of the CNS, 15
  • [25] Tissue-engineered bone regeneration
    Petite, H
    Viateau, V
    Bensaïd, W
    Meunier, A
    de Pollak, C
    Bourguignon, M
    Oudina, K
    Sedel, L
    Guillemin, G
    NATURE BIOTECHNOLOGY, 2000, 18 (09) : 959 - 963
  • [26] Composite tissue-engineered materials
    Vesely, I
    Ramamurthi, A
    Shi, Y
    SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES, 2002, : 811 - 812
  • [27] Tissue-Engineered Urinary Conduits
    Max Kates
    Anirudha Singh
    Hotaka Matsui
    Gary D. Steinberg
    Norm D. Smith
    Mark P. Schoenberg
    Trinity J Bivalacqua
    Current Urology Reports, 2015, 16
  • [28] Functional Consequences of a Tissue-Engineered Myocardial Patch for Cardiac Repair in a Rat Infarct Model
    Wendel, Jacqueline S.
    Ye, Lei
    Zhang, Pengyuan
    Tranquillo, Robert T.
    Zhang, Jianyi
    CIRCULATION, 2013, 128 (22)
  • [29] Tissue-Engineered Model of Human Osteolytic Bone Tumor
    Villasante, Aranzazu
    Marturano-Kruik, Alessandro
    Robinson, Samuel T.
    Liu, Zen
    Guo, X. Edward
    Vunjak-Novakovic, Gordana
    TISSUE ENGINEERING PART C-METHODS, 2017, 23 (02) : 98 - 107
  • [30] Characterization of a tissue-engineered choroid
    Djigo, Aicha Dede
    Berube, Julie
    Landreville, Solange
    Proulx, Stephanie
    ACTA BIOMATERIALIA, 2019, 84 : 305 - 316