Probabilistic Programming with Densities in SlicStan: Efficient, Flexible, and Deterministic

被引:12
|
作者
Gorinova, Maria, I [1 ]
Gordon, Andrew D. [1 ,2 ]
Sutton, Charles [1 ,3 ]
机构
[1] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[2] Microsoft Res Cambridge, Cambridge, England
[3] Google Brain, Mountain View, CA USA
来源
PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL | 2019年 / 3卷 / POPL期
基金
英国工程与自然科学研究理事会;
关键词
probabilistic programming; information flow analysis; SEMANTICS; SAMPLER;
D O I
10.1145/3290348
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Stan is a probabilistic programming language that has been increasingly used for real-world scalable projects. However, to make practical inference possible, the language sacrifices some of its usability by adopting a block syntax, which lacks compositionality and flexible user-defined functions. Moreover, the semantics of the language has been mainly given in terms of intuition about implementation, and has not been formalised. This paper provides a formal treatment of the Stan language, and introduces the probabilistic programming language SlicStan - a compositional, self-optimising version of Stan. Our main contributions are (1) the formalisation of a core subset of Stan through an operational density-based semantics; (2) the design and semantics of the Stan-like language SlicStan, which facilities better code reuse and abstraction through its compositional syntax, more flexible functions, and information-flow type system; and (3) a formal, semantic-preserving procedure for translating SlicStan to Stan.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Conditioning in Probabilistic Programming
    Benjamin, Nils Jansen
    Kaminski, Lucien
    Katoen, Joost-Pieter
    Olmedo, Federico
    Gretz, Friedrich
    McIver, Annabelle
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2015, 319 : 199 - 216
  • [2] Reactive Probabilistic Programming
    Baudart, Guillaume
    Mandel, Louis
    Atkinson, Eric
    Sherman, Benjamin
    Pouzet, Marc
    Carbin, Michael
    PROCEEDINGS OF THE 41ST ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION (PLDI '20), 2020, : 898 - 912
  • [3] Conditioning in Probabilistic Programming
    Olmedo, Federico
    Gretz, Friedrich
    Jansen, Nils
    Kaminski, Benjamin Lucien
    Katoen, Joost-Pieter
    Mciver, Annabelle
    ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 2018, 40 (01):
  • [4] Concavity and efficient points of discrete distributions in probabilistic programming
    Dentcheva, D
    Prékopa, A
    Ruszczynski, A
    MATHEMATICAL PROGRAMMING, 2000, 89 (01) : 55 - 77
  • [5] Semi-symbolic Inference for Efficient Streaming Probabilistic Programming
    Atkinson, Eric
    Yuan, Charles
    Baudart, Guillaume
    Mandel, Louis
    Carbin, Michael
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2022, 6 (OOPSLA):
  • [6] Probabilistic programming with programmable inference
    Mansinghka V.K.
    Schaechtle U.
    Handa S.
    Radul A.
    Chen Y.
    Rinard M.
    ACM SIGPLAN Notices, 2018, 53 (04): : 603 - 616
  • [7] Probabilistic Programming with Programmable Inference
    Mansinghka, Vikash K.
    Schaechtle, Ulrich
    Handa, Shivam
    Radul, Alexey
    Chen, Yutian
    Rinard, Martin
    PROCEEDINGS OF THE 39TH ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION, PLDI 2018, 2018, : 603 - 616
  • [8] Probabilistic Programming with Programmable Inference
    Mansinghka, Vikash K.
    Schaechtle, Ulrich
    Handa, Shivam
    Radul, Alexey
    Chen, Yutian
    Rinard, Martin
    ACM SIGPLAN NOTICES, 2018, 53 (04) : 603 - 616
  • [9] Probabilistic Programming with Stochastic Probabilities
    Lew, Alexander K.
    Ghavamizadeh, Matin
    Rinard, Martin C.
    Mansinghka, Vikash K.
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2023, 7 (PLDI):
  • [10] Bean Machine: A Declarative Probabilistic Programming Language For Efficient Programmable Inference
    Tehrani, Nazanin
    Arora, Nimar S.
    Li, Yucen Lily
    Shah, Kinjal Divesh
    Noursi, David
    Tingley, Michael
    Torabi, Narjes
    Masouleh, Sepehr
    Lippert, Eric
    Meijer, Erik
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 485 - 496