Extremely Accessible Potassium Nitrate (KNO3) as the Highly Efficient Electrolyte Additive in Lithium Battery

被引:140
作者
Jia, Weishang [1 ]
Fan, Cong [1 ]
Wang, Liping [1 ]
Wang, Qingji [1 ]
Zhao, Mingjuan [1 ]
Zhou, Aijun [1 ]
Li, Jingze [1 ]
机构
[1] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Sch Microelect & Solid State Elect, Chengdu 610054, Peoples R China
基金
美国国家科学基金会;
关键词
potassium nitrate; synergetic effect; solid-electrolyte interphase; electrolyte additive; Li-S battery; SULFUR BATTERIES; DENDRITE GROWTH; METAL ANODES; ELECTROCHEMICAL PERFORMANCE; RECHARGEABLE BATTERIES; LICOO2; ELECTRODES; ENERGY DENSITY; LI METAL; LIQUID; POLYSULFIDE;
D O I
10.1021/acsami.6b03897
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The systematic investigation of RNO3 salts (R = Li, Na, K, and Cs) as electrolyte additives was carried out for lithium-battery systems. For the first time, the abundant and extremely available KNO3 was proved to be an excellent alternative of LiNO3 for suppression of the lithium dendrites. The reason was ascribed to the possible synergetic effect of K+ and NO3- ions: The positively charged K+ ion could surround the lithium dendrites by electrostatic attraction and then delay their further growth, while simultaneously the oxidative NO3 ion could be reduced and subsequently profitable to the reinforcement of the solid electrolyte interphase (SEI). By adding KNO3 into the practical Li-S battery, the discharging capacity was enhanced to average 687 mAh g(-1) from the case without KNO3 (528 mAh g(-1)) during 100 cycles, which was comparable to the one with the well-known LiNO3 additive (637 mAh g(-1)) under the same conditions.
引用
收藏
页码:15399 / 15405
页数:7
相关论文
共 42 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[3]   Effect of LiNO3 additive and pyrrolidinium ionic liquid on the solid electrolyte interphase in the lithium sulfur battery [J].
Barghamadi, Marzieh ;
Best, Adam S. ;
Bhatt, Anand I. ;
Hollenkamp, Anthony F. ;
Mahon, Peter J. ;
Musameh, Mustafa ;
Ruether, Thomas .
JOURNAL OF POWER SOURCES, 2015, 295 :212-220
[4]   Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode [J].
Bieker, Georg ;
Winter, Martin ;
Bieker, Peter .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) :8670-8679
[5]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[6]   Lithium-sulfur batteries: Influence of C-rate, amount of electrolyte and sulfur loading on cycle performance [J].
Brueckner, Jan ;
Thieme, Soeren ;
Grossmann, Hannah Tamara ;
Doerfler, Susanne ;
Althues, Holger ;
Kaskel, Stefan .
JOURNAL OF POWER SOURCES, 2014, 268 :82-87
[7]   Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries [J].
Cheng, Xin-Bing ;
Peng, Hong-Jie ;
Huang, Jia-Qi ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
ACS NANO, 2015, 9 (06) :6373-6382
[8]   Dendrite-free lithium metal anodes: stable solid electrolyte interphases for high-efficiency batteries [J].
Cheng, Xin-Bing ;
Zhang, Qiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (14) :7207-7209
[9]   Polysulfide shuttle control: Towards a lithium-sulfur battery with superior capacity performance up to 1000 cycles by matching the sulfur/electrolyte loading [J].
Cheng, Xin-Bing ;
Huang, Jia-Qi ;
Peng, Hong-Jie ;
Nie, Jing-Qi ;
Liu, Xin-Yan ;
Zhang, Qiang ;
Wei, Fei .
JOURNAL OF POWER SOURCES, 2014, 253 :263-268
[10]   Superior electrochemical performance of LiCoO2 electrodes enabled by conductive Al2O3-doped ZnO coating via magnetron sputtering [J].
Dai, Xinyi ;
Zhou, Aijun ;
Xu, Jin ;
Yang, Bin ;
Wang, Liping ;
Li, Jingze .
JOURNAL OF POWER SOURCES, 2015, 298 :114-122