Recursive Maximum Likelihood Identification of Jump Markov Nonlinear Systems

被引:60
|
作者
Ozkan, Emre [1 ]
Lindsten, Fredrik [2 ]
Fritsche, Carsten [1 ]
Gustafsson, Fredrik [1 ]
机构
[1] Linkoping Univ, Div Automat Control, Linkoping, Sweden
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1TN, England
基金
瑞典研究理事会;
关键词
Adaptive filtering; expectation maximization; identification; jump Markov systems; parameter estimation; particle filter; Rao-Blackwellization; transition probability estimation; MULTIPLE MODEL ALGORITHM; TRANSITION-PROBABILITIES; PARTICLE FILTER; TARGET TRACKING; EM; SIMULATION;
D O I
10.1109/TSP.2014.2385039
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an online method for joint state and parameter estimation in jump Markov non-linear systems (JMNLS). State inference is enabled via the use of particle filters which makes the method applicable to a wide range of non-linear models. To exploit the inherent structure of JMNLS, we design a Rao-Blackwellized particle filter (RBPF) where the discrete mode is marginalized out analytically. This results in an efficient implementation of the algorithm and reduces the estimation error variance. The proposed RBPF is then used to compute, recursively in time, smoothed estimates of complete data sufficient statistics. Together with the online expectation maximization algorithm, this enables recursive identification of unknown model parameters including the transition probability matrix. The method is also applicable to online identification of jump Markov linear systems(JMLS). The performance of the method is illustrated in simulations and on a localization problem in wireless networks using real data.
引用
收藏
页码:754 / 765
页数:12
相关论文
共 50 条
  • [1] Gradient-Based Recursive Maximum Likelihood Identification of Jump Markov Non-Linear Systems
    Braga, Andre R.
    Fritsche, Carsten
    Gustafsson, Fredrik
    Bruno, Marcelo G. S.
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 228 - 234
  • [2] Maximum likelihood estimation of transition probabilities of jump Markov linear systems
    Orguner, Umut
    Demirekler, Muebeccel
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (10) : 5093 - 5108
  • [3] RECURSIVE (ONLINE) MAXIMUM LIKELIHOOD IDENTIFICATION METHOD
    GERTLER, J
    BANYASZ, C
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 816 - 820
  • [4] Maximum likelihood based identification for nonlinear multichannel communications systems
    Rekik, Ouahbi (ouahbi.rekik@univ-paris13.fr), 1600, Elsevier B.V. (189):
  • [5] Maximum likelihood based identification for nonlinear multichannel communications systems
    Rekik, Ouahbi
    Abed-Meraim, Karim
    Nait-Meziane, Mohamed
    Mokraoui, Anissa
    Nguyen Linh Trung
    SIGNAL PROCESSING, 2021, 189
  • [6] Maximum likelihood state estimation for Markov jump systems with uncertain mode-dependent delays
    Sun, Qing
    Lim, Cheng-Chew
    Liu, Fei
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2016, 353 (02): : 594 - 614
  • [7] EXTENDED RECURSIVE MAXIMUM-LIKELIHOOD IDENTIFICATION ALGORITHM
    NORTON, JP
    PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1979, 126 (02): : 185 - 188
  • [8] DERIVATION OF RECURSIVE MAXIMUM-LIKELIHOOD IDENTIFICATION ALGORITHM
    PANUSKA, V
    ELECTRONICS LETTERS, 1977, 13 (01) : 19 - 20
  • [9] Recursive maximum likelihood estimation for hidden semi-Markov models
    Squire, K
    Levinson, SE
    2005 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2005, : 329 - 334
  • [10] INITIAL CONVERGENCE OF RECURSIVE MAXIMUM-LIKELIHOOD IDENTIFICATION ALGORITHMS
    NORTON, JP
    ELECTRONICS LETTERS, 1977, 13 (20) : 621 - 622