Inhibition of the 3CL Protease and SARS-CoV-2 Replication by Dalcetrapib

被引:19
作者
Niesor, Eric J. [5 ]
Boivin, Guy [1 ]
Rheaume, Eric [2 ]
Shi, Rong [3 ]
Lavoie, Veronique [2 ]
Goyette, Nathalie [1 ]
Picard, Marie-Eve [3 ]
Perez, Anne [4 ]
Laghrissi-Thode, Fouzia [5 ]
Tardif, Jean-Claude [2 ]
机构
[1] Univ Laval, Ctr Hosp Univ Quebec, Quebec City, PQ G1V 0A6, Canada
[2] Univ Montreal, Montreal Heart Inst, Montreal, PQ H1T 1C8, Canada
[3] Univ Laval, Dept Biochem Microbiol & Bioinformat, Quebec City, PQ G1V 0A6, Canada
[4] Hartis Pharma, CH-1260 Nyon, Switzerland
[5] DalCor Pharmaceut, Montreal, PQ H3A 2R7, Canada
关键词
PHARMACOKINETICS; DOCKING; DESIGN; SINGLE;
D O I
10.1021/acsomega.1c01797
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 3CL protease is a promising target for inhibition of viral replication by interaction with a cysteine residue (Cys145) at its catalytic site. Dalcetrapib exerts its lipid-modulating effect by binding covalently to cysteine 13 of a cholesteryl ester transfer protein. Because 12 free cysteine residues are present in the 3CL protease, we investigated the potential of dalcetrapib to inhibit 3CL protease activity and SARS-CoV-2 replication. Molecular docking investigations suggested that dalcetrapib-thiol binds to the catalytic site of the 3CL protease with a delta G value of -8.5 kcal/mol. Dalcetrapib inhibited both 3CL protease activity in vitro and viral replication in Vero E6 cells with IC50 values of 14.4 +/- 3.3 mu M and an EC50 of 17.5 +/- 3.5 mu M (mean +/- SD). Near-complete inhibition of protease activity persisted despite 1000-fold dilution after ultrafiltration with a nominal dalcetrapib-thiol concentration of approximately 100 times below the IC50 of 14.4 mu M, suggesting stable protease-drug interaction. The inhibitory effect of dalcetrapib on the SARS-CoV-2 3CL protease and viral replication warrants its clinical evaluation for the treatment of COVID-19.
引用
收藏
页码:16584 / 16591
页数:8
相关论文
共 47 条
[31]   Free Thiol Group of MD-2 as the Target for Inhibition of the Lipopolysaccharide-induced Cell Activation [J].
Mancek-Keber, Mateja ;
Gradisar, Helena ;
Inigo Pestana, Melania ;
Martinez de Tejada, Guillermo ;
Jerala, Roman .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (29) :19493-19500
[32]   Evidence for a role of CETP in HDL remodeling and cholesterol efflux: Role of cysteine 13 of CETP [J].
Maugeais, Cyrille ;
Perez, Anne ;
von der Mark, Elisabeth ;
Magg, Christine ;
Pflieger, Philippe ;
Niesor, Eric J. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2013, 1831 (11) :1644-1650
[33]   Modulating cholesteryl ester transfer protein activity maintains efficient pre-β-HDL formation and increases reverse cholesterol transport [J].
Niesor, Eric J. ;
Magg, Christine ;
Ogawa, Naoto ;
Okamoto, Hiroshi ;
von der Mark, Elisabeth ;
Matile, Hugues ;
Schmid, Georg ;
Clerc, Roger G. ;
Chaput, Evelyne ;
Blum-Kaelin, Denise ;
Huber, Walter ;
Thoma, Ralf ;
Pflieger, Philippe ;
Kakutani, Makoto ;
Takahashi, Daisuke ;
Dernick, Gregor ;
Maugeais, Cyrille .
JOURNAL OF LIPID RESEARCH, 2010, 51 (12) :3443-3454
[34]   Open Babel: An open chemical toolbox [J].
O'Boyle, Noel M. ;
Banck, Michael ;
James, Craig A. ;
Morley, Chris ;
Vandermeersch, Tim ;
Hutchison, Geoffrey R. .
JOURNAL OF CHEMINFORMATICS, 2011, 3
[35]   A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits [J].
Okamoto, H ;
Yonemori, F ;
Wakitani, K ;
Minowa, T ;
Maeda, K ;
Shinkai, H .
NATURE, 2000, 406 (6792) :203-207
[36]   An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy [J].
Pillaiyar, Thanigaimalai ;
Manickam, Manoj ;
Namasivayam, Vigneshwaran ;
Hayashi, Yoshio ;
Jung, Sang-Hun .
JOURNAL OF MEDICINAL CHEMISTRY, 2016, 59 (14) :6595-6628
[37]   Biochemical characterization of cholesteryl ester transfer protein inhibitors [J].
Ranalletta, Mollie ;
Bierilo, Kathleen K. ;
Chen, Ying ;
Milot, Denise ;
Chen, Qing ;
Tung, Elaine ;
Houde, Caroline ;
Elowe, Nadine H. ;
Garcia-Calvo, Margarita ;
Porter, Gene ;
Eveland, Suzanne ;
Frantz-Wattley, Betsy ;
Kavana, Mike ;
Addona, George ;
Sinclair, Peter ;
Sparrow, Carl ;
O'Neill, Edward A. ;
Koblan, Ken S. ;
Sitlani, Ayesha ;
Hubbard, Brian ;
Fisher, Timothy S. .
JOURNAL OF LIPID RESEARCH, 2010, 51 (09) :2739-2752
[38]   Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19) A Review [J].
Sanders, James M. ;
Monogue, Marguerite L. ;
Jodlowski, Tomasz Z. ;
Cutrell, James B. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (18) :1824-1836
[39]   Effects of Dalcetrapib in Patients with a Recent Acute Coronary Syndrome [J].
Schwartz, Gregory G. ;
Olsson, Anders G. ;
Abt, Markus ;
Ballantyne, Christie M. ;
Barter, Philip J. ;
Brumm, Jochen ;
Chaitman, Bernard R. ;
Holme, Ingar M. ;
Kallend, David ;
Leiter, Lawrence A. ;
Leitersdorf, Eran ;
McMurray, John J. V. ;
Mundl, Hardi ;
Nicholls, Stephen J. ;
Shah, Prediman K. ;
Tardif, Jean-Claude ;
Wright, R. Scott .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 367 (22) :2089-2099
[40]   The influence of multiple oral administration on the pharmacokinetics and distribution profile of dalcetrapib in rats [J].
Takubo, Hiroaki ;
Ishikawa, Tomohiro ;
Taniguchi, Toshio ;
Iwanaga, Kazunori ;
Nomura, Yukihiro .
XENOBIOTICA, 2021, 51 (01) :82-87