On the Lane-Emden equations with fully nonlinear operators

被引:0
作者
Birindelli, I [1 ]
Demengel, F [1 ]
机构
[1] Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
关键词
D O I
10.1016/S1631-073X(03)00129-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On the Lane-Emden equations with fully nonlinear operators. In this Note we consider nonnegative solutions for the nonlinear equation M-lambda, Lambda(+)(D(2)u) + \x\(alpha)u(rho) = 0 in R-N, where M-lambda, Lambda(+)(D(2)u) is the so called Pucci operator M-lambda, Lambda(+)(M) = lambdaSigma(ei<0)e(i) + Lambda Sigma(ei>0)e(i), and the e(i) are the eigenvalues of M et Lambda greater than or equal to lambda > 0. We prove that if u satisfies the decreasing estimate lim(\x\-->+infinity)\x\(beta-1)u(x) = 0 for some beta satisfying (beta-1)(p-1) > 2 + alpha then u is radial. In a second time we prove that if p < N+2alpha+2/N-2 and u is a nonnegative radial solution of (1), u(x) = g(r), such that g" changes sign at most once, then u is zero. (C) 2003 Academie des sciences. Publie par Editions scientifiques et medicales Elsevier SAS. Tous droits reserves.
引用
收藏
页码:725 / 730
页数:6
相关论文
共 4 条
[1]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[2]   CLASSIFICATION OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS [J].
CHEN, WX ;
LI, CM .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) :615-622
[3]   On the Liouville property for fully nonlinear equations [J].
Cutrì, A ;
Leoni, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (02) :219-245
[4]   GLOBAL AND LOCAL BEHAVIOR OF POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS [J].
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :525-598