Crystal Structures and Local Environments of NASICON-Type Na3FeV(PO4)3 and Na4FeV(PO4)3 Positive Electrode Materials for Na-Ion Batteries

被引:62
作者
Park, Sunkyu [1 ,2 ,3 ]
Chotard, Jean-Noel [1 ,4 ]
Carlier, Dany [2 ,4 ]
Moog, Iona [3 ]
Courty, Matthieu [1 ]
Duttine, Mathieu [2 ]
Fauth, Francois [5 ]
Iadecola, Antonella [4 ]
Croguennec, Laurence [2 ,4 ]
Masquelier, Christian [1 ,4 ]
机构
[1] Univ Picardie Jules Verne, Lab Reactivite & Chim Solides, CNRS UMR 7314, F-80039 Amiens 1, France
[2] Univ Bordeaux, CNRS, Bordeaux INP, ICMCB UMR 5026, F-33600 Pessac, France
[3] TIAMAT, F-80000 Amiens, France
[4] FR CNRS 3459, RS2E, Reseau Francais Stockage Electrochim Energie, F-80039 Amiens 1, France
[5] CELLS ALBA Synchrotron, E-08290 Barcelona, Spain
关键词
ELECTROCHEMICAL PERFORMANCE; ENERGY DENSITY; CATHODE; IRON; NA3V2(PO4)(3); FE; DIFFRACTION; STRATEGY; FORM;
D O I
10.1021/acs.chemmater.1c01457
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we investigate the crystal chemistry of Fe/V-mixed NASICON [sodium (Na) Super Ionic CONductor] compositions Na3FeV(PO4)(3) and Na4FeV(PO4)(3) that are structurally related to Na3V2(PO4)(3), a positive electrode for Na-ion batteries. To synthesize Na4FeV(PO4)(3), various synthesis routes (solid-state, sol-gel-assisted, and electrochemical syntheses) were investigated. Direct syntheses resulted in the formation of a NASICON-type phase in the presence of NaFePO4 and Na3PO4 impurities. The successful preparation of pure Na4FeV(PO4)(3) has been achieved by the electrochemical sodiation of Na3FeV(PO4)(3). Both synchrotron X-ray absorption and Mossbauer spectroscopy allowed probing the local V and Fe environments and their oxidation states in Na3FeV(PO4)(3) and Na4FeV(PO4)(3). Na3FeV(PO4)(3) crystallizes in the space group C2/c (a = 15.1394(2) angstrom; b = 8.72550(12) angstrom; c = 21.6142(3) angstrom; beta = 90.1744(9)degrees; and Z = 12), and it is isostructural to an ordered alpha-form of Na3M2(PO4)(3) (M = Fe, V). It presents a superstructure due to Na+ ordering, as confirmed by differential scanning calorimetry and in situ temperature X-ray diffraction. The electrochemically sodiated Na4FeV(PO4)(3) powder crystallizes in the space group R (3) over barc (a = 8.94656(8) angstrom, c = 21.3054(3) angstrom, and Z = 6) within which the two sodium sites, Na(1) and Na(2), are almost fully occupied. Na4FeV(PO4)(3) allows the electrochemical extraction of 2.76 Na+ per formula unit within the voltage range of 1.3-4.3 V versus Na+/Na through the Fe-III/II, V-IV/III, and V-V/IV redox couples. This identifies an interesting material for Na-ion batteries.
引用
收藏
页码:5355 / 5367
页数:13
相关论文
共 57 条
[11]   Na3MnZr(PO4)3: A High-Voltage Cathode for Sodium Batteries [J].
Gao, Hongcai ;
Seymour, Ieuan D. ;
Xin, Sen ;
Xue, Leigang ;
Henkelman, Graeme ;
Goodenough, John B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (51) :18192-18199
[12]   Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries [J].
Gaubicher, J ;
Wurm, C ;
Goward, G ;
Masquelier, C ;
Nazar, L .
CHEMISTRY OF MATERIALS, 2000, 12 (11) :3240-+
[13]   Fast sodium intercalation in Na3.41£0.59FeV(PO4)3: A novel sodium-deficient NASICON cathode for sodium-ion batteries [J].
Hadouchi, Mohammed ;
Yaqoob, Najma ;
Kaghazchi, Payam ;
Tang, Mingxue ;
Liu, Jie ;
Sang, Pengfei ;
Fu, Yongzhu ;
Huang, Yunhui ;
Ma, Jiwei .
ENERGY STORAGE MATERIALS, 2021, 35 :192-202
[14]   Challenges of today for Na-based batteries of the future: From materials to cell metrics [J].
Hasa, Ivana ;
Mariyappan, Sathiya ;
Saurel, Damien ;
Adelhelm, Philipp ;
Koposov, Alexey Y. ;
Masquelier, Christian ;
Croguennec, Laurence ;
Casas-Cabanas, Montse .
JOURNAL OF POWER SOURCES, 2021, 482
[15]   Na4Fe2+Fe3+(PO4)3, a new synthetic NASICON-type phosphate [J].
Hatert, Frederic .
ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE, 2009, 65 :I30-U174
[16]   Uncovering the Potential of M1-Site-Activated NASICON Cathodes for Zn-Ion Batteries [J].
Hu, Pu ;
Zou, Zheyi ;
Sun, Xingwei ;
Wang, Da ;
Ma, Jun ;
Kong, Qingyu ;
Xiao, Dongdong ;
Gu, Lin ;
Zhou, Xinhong ;
Zhao, Jingwen ;
Dong, Shanmu ;
He, Bing ;
Avdeev, Maxim ;
Shi, Siqi ;
Cui, Guanglei ;
Chen, Liquan .
ADVANCED MATERIALS, 2020, 32 (14)
[17]   The effects of Mn substitution on the structural and magnetic properties of the NASICON-type Na3Fe2-xMnx (PO4)3 solid solution [J].
Idczak, R. ;
Tran, V. H. ;
Swiatek-Tran, B. ;
Walczak, K. ;
Zajac, W. ;
Molenda, J. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 491
[18]   Improvement in the Energy Density of Na3V2(PO4)3 by Mg Substitution [J].
Inoishi, Atsushi ;
Yoshioka, Yuto ;
Zhao, Liwei ;
Kitajou, Ayuko ;
Okada, Shigeto .
CHEMELECTROCHEM, 2017, 4 (11) :2755-2759
[19]   Exploring Factors Limiting Three-Na+ Extraction from Na3V2(PO4)3 [J].
Ishado, Yuji ;
Inoishi, Atsushi ;
Okada, Shigeto .
ELECTROCHEMISTRY, 2020, 88 (05) :457-462
[20]   α-Na3M2(PO4)3 (M = Ti, Fe): Absolute Cationic Ordering in NASICON-Type Phases [J].
Kabbour, Houria ;
Coillot, Daniel ;
Colmont, Marie ;
Masquelier, Christian ;
Mentre, Olivier .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (31) :11900-11903