An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study

被引:115
作者
Williams, Bryan M. [1 ,2 ,3 ]
Borroni, Davide [2 ,4 ]
Liu, Rongjun [5 ]
Zhao, Yitian [2 ,6 ]
Zhang, Jiong [7 ]
Lim, Jonathan [8 ]
Ma, Baikai [5 ]
Romano, Vito [1 ,2 ]
Qi, Hong [5 ]
Ferdousi, Maryam [8 ]
Petropoulos, Ioannis N. [9 ]
Ponirakis, Georgios [9 ]
Kaye, Stephen [1 ,2 ]
Malik, Rayaz A. [9 ]
Alam, Uazman [10 ,11 ,12 ,13 ,14 ]
Zheng, Yalin [1 ,2 ]
机构
[1] Univ Liverpool, Dept Eye & Vis Sci, William Henry Duncan Bldg,6 West Derby St, Liverpool L7 8TX, Merseyside, England
[2] Royal Liverpool Univ Hosp, St Pauls Eye Unit, Liverpool, Merseyside, England
[3] Univ Lancaster, Data Sci Inst, Lancaster, England
[4] Riga Stradins Univ, Dept Ophthalmol, Riga, Latvia
[5] Peking Univ, Dept Ophthalmol, Hosp 3, Beijing, Peoples R China
[6] Chinese Acad Sci, Ningbo Inst Ind Technol, Cixi Inst Biomed Engn, Ningbo, Zhejiang, Peoples R China
[7] Univ Southern Calif, Keck Sch Med, Inst Neuroimaging & Informat, Lab Neuro Imaging, Los Angeles, CA USA
[8] Aintree Univ Hosp NHS Fdn Trust, Dept Endocrinol & Diabet, Longmoor Lane, Liverpool, Merseyside, England
[9] Weill Cornell Med Qatar, Doha, Qatar
[10] Univ Liverpool, Dept Eye & Vis Sci, Diabet & Neuropathy Res, William Henry Duncan Bldg,6 West Derby St, Liverpool L7 8TX, Merseyside, England
[11] Univ Liverpool, Pain Res Inst, Inst Ageing & Chron Dis, William Henry Duncan Bldg,6 West Derby St, Liverpool L7 8TX, Merseyside, England
[12] Aintree Univ Hosp NHS Fdn Trust, William Henry Duncan Bldg,6 West Derby St, Liverpool L7 8TX, Merseyside, England
[13] Royal Liverpool & Broadgreen Univ NHS Hosp Trust, Dept Endocrinol & Diabet, Liverpool, Merseyside, England
[14] Univ Manchester, Div Endocrinol Diabet & Gastroenterol, Manchester, Lancs, England
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
Corneal confocal microscopy; Corneal nerve; Deep learning; Diabetic neuropathy; Image processing and analysis; Image segmentation; Ophthalmic imaging; Small nerve fibres; PERIPHERAL NEUROPATHY; SKIN BIOPSY; AUTOMATIC-ANALYSIS; NERVE-FIBERS; SEVERITY; GUIDELINE; IMAGES; DAMAGE;
D O I
10.1007/s00125-019-05023-4
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims/hypothesis Corneal confocal microscopy is a rapid non-invasive ophthalmic imaging technique that identifies peripheral and central neurodegenerative disease. Quantification of corneal sub-basal nerve plexus morphology, however, requires either time-consuming manual annotation or a less-sensitive automated image analysis approach. We aimed to develop and validate an artificial intelligence-based, deep learning algorithm for the quantification of nerve fibre properties relevant to the diagnosis of diabetic neuropathy and to compare it with a validated automated analysis program, ACCMetrics. Methods Our deep learning algorithm, which employs a convolutional neural network with data augmentation, was developed for the automated quantification of the corneal sub-basal nerve plexus for the diagnosis of diabetic neuropathy. The algorithm was trained using a high-end graphics processor unit on 1698 corneal confocal microscopy images; for external validation, it was further tested on 2137 images. The algorithm was developed to identify total nerve fibre length, branch points, tail points, number and length of nerve segments, and fractal numbers. Sensitivity analyses were undertaken to determine the AUC for ACCMetrics and our algorithm for the diagnosis of diabetic neuropathy. Results The intraclass correlation coefficients for our algorithm were superior to those for ACCMetrics for total corneal nerve fibre length (0.933 vs 0.825), mean length per segment (0.656 vs 0.325), number of branch points (0.891 vs 0.570), number of tail points (0.623 vs 0.257), number of nerve segments (0.878 vs 0.504) and fractals (0.927 vs 0.758). In addition, our proposed algorithm achieved an AUC of 0.83, specificity of 0.87 and sensitivity of 0.68 for the classification of participants without (n = 90) and with (n = 132) neuropathy (defined by the Toronto criteria). Conclusions/interpretation These results demonstrated that our deep learning algorithm provides rapid and excellent localisation performance for the quantification of corneal nerve biomarkers. This model has potential for adoption into clinical screening programmes for diabetic neuropathy. Data availability The publicly shared cornea nerve dataset (dataset 1) is available at http://bioimlab.dei.unipd.it/Corneal% 20Nerve%20Tortuosity%20Data%20Set.htm and http://bioimlab.dei.unipd.it/Corneal%20Nerve%20Data%20Set.htm.
引用
收藏
页码:419 / 430
页数:12
相关论文
共 51 条
[1]   Diabetic Neuropathy and Gait: A Review [J].
Alam, Uazman ;
Riley, David R. ;
Jugdey, Ravinder S. ;
Azmi, Shazli ;
Rajbhandari, Satyan ;
D'Aout, Kristiaan ;
Malik, Rayaz A. .
DIABETES THERAPY, 2017, 8 (06) :1253-1264
[2]   Diagnostic utility of corneal confocal microscopy and intra-epidermal nerve fibre density in diabetic neuropathy [J].
Alam, Uazman ;
Jeziorska, Maria ;
Petropoulos, Loannis N. ;
Asghar, Omar ;
Fadavi, Hassan ;
Ponirakis, Georgios ;
Marshall, Andrew ;
Tavakoli, Mitra ;
Boulton, Andrew J. M. ;
Efron, Nathan ;
Malik, Rayaz A. .
PLOS ONE, 2017, 12 (07)
[3]  
[Anonymous], INVEST OPHTH VIS SCI
[4]  
[Anonymous], INVEST OPHTH VIS SCI
[5]  
[Anonymous], INVEST OPHTH VIS SCI
[6]  
[Anonymous], INT J OPHTHALMIC PAT
[7]   Early nerve fibre regeneration in individuals with type 1 diabetes after simultaneous pancreas and kidney transplantation [J].
Azmi, Shazli ;
Jeziorska, Maria ;
Ferdousi, Maryam ;
Petropoulos, Ioannis N. ;
Ponirakis, Georgios ;
Marshall, Andrew ;
Alam, Uazman ;
Asghar, Omar ;
Atkinson, Andrew ;
Jones, Wendy ;
Boulton, Andrew J. M. ;
Brines, Michael ;
Augustine, Titus ;
Malik, Rayaz A. .
DIABETOLOGIA, 2019, 62 (08) :1478-1487
[8]   Comparison of the accuracy of monofilament testing at various points of feet in peripheral diabetic neuropathy screening [J].
Baraz S. ;
Zarea K. ;
Shahbazian H.B. ;
Latifi S.M. .
Journal of Diabetes & Metabolic Disorders, 13 (1)
[9]   Corneal nerve fiber size adds utility to the diagnosis and assessment of therapeutic response in patients with small fiber neuropathy [J].
Brines, Michael ;
Culver, Daniel A. ;
Ferdousi, Maryam ;
Tannemaat, Martijn R. ;
van Velzen, Monique ;
Dahan, Albert ;
Malik, Rayaz A. .
SCIENTIFIC REPORTS, 2018, 8
[10]   Imaging of Corneal Neovascularization: Optical Coherence Tomography Angiography and Fluorescence Angiography [J].
Brunner, Matthias ;
Romano, Vito ;
Steger, Bernhard ;
Vinciguerra, Riccardo ;
Lawman, Samuel ;
Williams, Bryan ;
Hicks, Nicholas ;
Czanner, Gabriela ;
Zheng, Yalin ;
Willoughby, Colin E. ;
Kaye, Stephen B. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (03) :1263-1269