Predicting energy consumption: A multiple decomposition-ensemble approach

被引:22
|
作者
Zhou, Cheng [1 ]
Chen, Xiyang [2 ]
机构
[1] Hubei Univ Econ, Res Ctr Hubei Dev, Wuhan 430205, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R China
关键词
Energy consumption; Forecast; Error compensation; Decomposition-ensemble; Wavelet transform; EMPIRICAL MODE DECOMPOSITION; WAVELET TRANSFORM; NEURAL-NETWORK; DEMAND; LOAD; COMBINATION; REGRESSION; SYSTEMS; ARIMA; PRICE;
D O I
10.1016/j.energy.2019.116045
中图分类号
O414.1 [热力学];
学科分类号
摘要
Reliable energy consumption prediction plays a vital role in formulating government's energy policies. In this study, a novel multiple decomposition-ensemble method based on error compensation is proposed to stably predict energy consumption. Firstly, trend decomposition is used to decompose the energy consumption into trend-subseries and error-subseries. In view of error compensation is a feasible approach for improving the prediction accuracy, the error-subseries that mentioned above are further divided into one low-frequency approximation error-subseries and several high-frequency detailed error-subseries by wavelet transform. Depending on their different dynamic changing characteristics, this study uses a Linear Regression Model to predict the trend-subseries, employs a Triple Exponential Smoothing Model to estimate the low-frequency approximation error-subseries, and uses an Auto Regression model to find the high-frequency detailed error-subseries. Finally, the overall energy consumption is the summation of these subseries predictions. Using the energy consumption data from China in 2007-2016, empirical study is carried out. The proposed multiple decomposition-ensemble method based on error compensation achieves the highest performance, which is compared with other six models (three single models, two traditional decomposition-ensemble models, and combination model). The proposed model is also validated by the U.S. data. Forecasts indicate that the energy demand of China will increase to 4.957343 billion Tons of standard Coal Equivalent in 2021, implying that China should speed up its transition to an energy-efficiency economy. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Do EEMD based decomposition-ensemble models indeed improve prediction for crude oil futures prices?
    Xu, Kunliang
    Niu, Hongli
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2022, 184
  • [32] A Stacking Multi-Learning Ensemble Model for Predicting Near Real Time Energy Consumption Demand of Residential Buildings
    Vesa, Andreea Valeria
    Ghitescu, Nicoleta
    Pop, Claudia
    Antal, Marcel
    Cioara, Tudor
    Anghel, Ionut
    Salomie, Ioan
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2019), 2019, : 183 - 189
  • [33] A comprehensive review and future research directions of ensemble learning models for predicting building energy consumption
    Wang, Zeyu
    Hong, Yuelan
    Huang, Luying
    Zheng, Miaocui
    Yuan, Hongping
    Zeng, Ruochen
    ENERGY AND BUILDINGS, 2025, 335
  • [34] A decomposition-ensemble prediction method of building thermal load with enhanced electrical load information
    Ma, Zherui
    Wang, Jiangjiang
    Dong, Fuxiang
    Wang, Ruikun
    Deng, Hongda
    Feng, Yingsong
    JOURNAL OF BUILDING ENGINEERING, 2022, 61
  • [35] A non-iterative decomposition-ensemble learning paradigm using RVFL network for crude oil price forecasting
    Tang, Ling
    Wu, Yao
    Yu, Lean
    APPLIED SOFT COMPUTING, 2018, 70 : 1097 - 1108
  • [36] Short-Term Forecasting for Energy Consumption through Stacking Heterogeneous Ensemble Learning Model
    Khairalla, Mergani A.
    Ning, Xu
    Al-Jallad, Nashat T.
    El-Faroug, Musaab O.
    ENERGIES, 2018, 11 (06)
  • [37] A granular deep learning approach for predicting energy consumption
    Jana, Rabin K.
    Ghosh, Indranil
    Sanyal, Manas K.
    APPLIED SOFT COMPUTING, 2020, 89
  • [38] Research and application of a novel hybrid decomposition-ensemble learning paradigm with error correction for daily PM10 forecasting
    Luo, Hongyuan
    Wang, Deyun
    Yue, Chenqiang
    Liu, Yanling
    Guo, Haixiang
    ATMOSPHERIC RESEARCH, 2018, 201 : 34 - 45
  • [39] A decomposition-ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting
    Yu, Lean
    Wang, Zishu
    Tang, Ling
    APPLIED ENERGY, 2015, 156 : 251 - 267
  • [40] A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting
    Tang, Ling
    Yu, Lean
    Wang, Shuai
    Li, Jianping
    Wang, Shouyang
    APPLIED ENERGY, 2012, 93 : 432 - 443