Convolutional Neural Networks for Noniterative Reconstruction of Compressively Sensed Images

被引:108
作者
Lohit, Suhas [1 ]
Kulkarni, Kuldeep [2 ,3 ]
Kerviche, Ronan [4 ]
Turaga, Pavan [5 ]
Ashok, Amit [6 ]
机构
[1] Arizona State Univ, Dept Elect Comp & Energy Engn, Tempe, AZ 85281 USA
[2] Arizona State Univ, Dept Arts Media & Engn, Tempe, AZ 85281 USA
[3] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
[4] Univ Arizona, Apple Inc, Coll Opt Sci, Tucson, AZ 85721 USA
[5] Arizona State Univ, Sch Arts Media & Engn, Tempe, AZ 85281 USA
[6] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
关键词
Compressive sensing; convolutional neural network; generative adversarial network; SIGNAL RECONSTRUCTION; INVERSE PROBLEMS; RECOVERY; TRACKING;
D O I
10.1109/TCI.2018.2846413
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traditional algorithms for compressive sensing recovery are computationally expensive and are ineffective at low measurement rates. In this paper, we propose a data-driven noniterative algorithm to overcome the shortcomings of earlier iterative algorithms. Our solution, ReconNet, is a deep neural network, which is learned end-to-end to map block-wise compressive measurements of the scene to the desired image blocks. Reconstruction of an image becomes a simple forward pass through the network and can be done in real time. We show empirically that our algorithm yields reconstructions with higher peak signal-to-noise ratios (PSNRs) compared to iterative algorithms at low measurement rates and in presence of measurement noise. We also propose a variant of ReconNet, which uses adversarial loss in order to further improve reconstruction quality. We discuss how adding a fully connected layer to the existing ReconNet architecture allows for jointly learning the measurement matrix and the reconstruction algorithm in a single network. Experiments on real data obtained from a block compressive imager show that our networks are robust to unseen sensor noise.
引用
收藏
页码:326 / 340
页数:15
相关论文
共 57 条
[1]  
[Anonymous], CLASSICAL OPT
[2]  
[Anonymous], P EUR C COMPUT VIS
[3]  
[Anonymous], IEEE WINT C APPL COM
[4]  
[Anonymous], DEEPBINARYMASK LEARN
[5]  
[Anonymous], ARXIV14085093
[6]  
[Anonymous], P 55 ANN ALL C COMM
[7]  
[Anonymous], PROC CVPR IEEE
[8]  
[Anonymous], 2015, PROC CVPR IEEE
[9]  
[Anonymous], 2010, P 27 INT C INT C MAC
[10]  
[Anonymous], ARXIV170205743