Sharp mixed norm spherical restriction

被引:12
作者
Carneiro, Emanuel [1 ,2 ]
Oliveira e Silva, Diogo [3 ]
Sousa, Mateus [4 ]
机构
[1] Abdus Salaam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[2] IMPA, BR-22460320 Rio De Janeiro, RJ, Brazil
[3] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[4] Univ Munich, Math Inst, Theresienstr 39, D-80333 Munich, Germany
关键词
Fourier restriction; Extremizers; Optimal constants; Delta calculus; Bessel functions; Mixed norm; FOURIER RESTRICTION; BESSEL-FUNCTIONS; WAVE-EQUATION; INEQUALITY; MAXIMIZERS; EXISTENCE; MONOTONICITY; EXTREMALS;
D O I
10.1016/j.aim.2018.10.043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d >= 2 be an integer and let 2d/(d - 1) < q <= infinity. In this paper we investigate the sharp form of the mixed norm Fourier extension inequality parallel to<(f sigma)over cap>parallel to(LradLang2)-L-n(R-d) <= C-d,C- q parallel to f parallel to L-2(Sd-1, d sigma), established by L. Vega in 1988. Letting A(d) subset of (2d/(d - 1), infinity] be the set of exponents for which the constant functions on Sd-1 are the unique extremizers of this inequality, we show that: (i) A(d) contains the even integers and infinity; (ii) A(d) is an open set in the extended topology; (iii) A(d) contains a neighborhood of infinity (qo (d), infinity] with qo (d) <= (1/2 + o(1)) d log d. In low dimensions we show that qo (2) <= 6.76; qo(3) <= 5.45; qo (4) <= 5.53; qo(5) <= 6.07. In particular, this breaks for the first time the even exponent barrier in sharp Fourier restriction theory. The crux of the matter in our approach is to establish a hierarchy between certain weighted norms of Bessel functions, a nontrivial question of independent interest within the theory of special functions. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:583 / 608
页数:26
相关论文
共 31 条
[1]  
[Anonymous], 1966, TREATISE THEORY BESS
[2]  
[Anonymous], THESIS
[3]   BAND-LIMITED FUNCTIONS - LP-CONVERGENCE [J].
BARCELO, JA ;
CORDOBA, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 313 (02) :655-669
[4]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[5]   HEAT-FLOW MONOTONICITY OF STRICHARTZ NORMS [J].
Bennett, Jonathan ;
Bez, Neal ;
Carbery, Anthony ;
Hundertmark, Dirk .
ANALYSIS & PDE, 2009, 2 (02) :147-158
[6]   A sharp Strichartz estimate for the wave equation with data in the energy space [J].
Bez, Neal ;
Rogers, Keith M. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (03) :805-823
[7]   Extremizers for Fourier restriction on hyperboloids [J].
Carneiro, Emanuel ;
Oliveira e Silva, Diogo ;
Sousa, Mateus .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (02) :389-415
[8]   A sharp trilinear inequality related to Fourier restriction on the circle [J].
Carneiro, Emanuel ;
Foschi, Damiano ;
Oliveira e Silva, Diogo ;
Thiele, Christoph .
REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (04) :1463-1486
[9]   Some Sharp Restriction Inequalities on the Sphere [J].
Carneiro, Emanuel ;
Oliveira e Silva, Diogo .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, (17) :8233-8267
[10]   A Sharp Inequality for the Strichartz Norm [J].
Carneiro, Emanuel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (16) :3127-3145