On the generalized weights of a class of trace codes

被引:6
作者
Cherdieu, JP [1 ]
Mercier, DJ [1 ]
Narayaninsamy, T [1 ]
机构
[1] Univ Anitlles Guyane, Dept Math & Informat, Equipe Applicat Algebre & Arithmet, F-97159 Pointe A Pitre, France
关键词
finite fields; hypersurface; exponential sums; trace codes; functional codes; quadratic hermitian forms; Wei weights;
D O I
10.1006/ffta.2000.0298
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We build a class of codes using hermitian forms and the functional trace code. Then we give a general expression of the rth minimum distance of our code and compute general bounds for the weight hierarchy by using exponential sums. We also get the minimum distance and calculate the rth generalized Hamming weight d(r) in some special cases. (C) 2001 Academic Press.
引用
收藏
页码:355 / 371
页数:17
相关论文
共 8 条
[1]  
[Anonymous], 1983, ENCY MATH APPL
[2]  
BOSE RC, 1996, CAN J MATH, V18, P1161
[3]  
CHERDIEU JP, 1995, IEEE T INFORM THEORY, V41, P1
[4]   THE WEIGHT HIERARCHY OF HIGHER-DIMENSIONAL HERMITIAN CODES [J].
HIRSCHFELD, JWP ;
TSFASMAN, MA ;
VLADUT, SG .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (01) :275-278
[5]   ARTIN-SCHREIER CURVES, EXPONENTIAL-SUMS, AND CODING THEORY [J].
LACHAUD, G .
THEORETICAL COMPUTER SCIENCE, 1992, 94 (02) :295-310
[6]  
Lachaud G, 1996, ARITHMETIC, GEOMETRY AND CODING THEORY, P77
[7]   GENERALIZED HAMMING WEIGHTS OF TRACE CODES [J].
STICHTENOTH, H ;
VOSS, C .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :554-558
[8]   GENERALIZED HAMMING WEIGHTS FOR LINEAR CODES [J].
WEI, VK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (05) :1412-1418