Basal Gp78-dependent mitophagy promotes mitochondrial health and limits mitochondrial ROS

被引:15
|
作者
Alan, Parsa [1 ]
Vandevoorde, Kurt R. [1 ]
Joshi, Bharat [1 ]
Cardoen, Ben [2 ]
Gao, Guang [1 ]
Mohammadzadeh, Yahya [1 ]
Hamarneh, Ghassan [2 ]
Nabi, Ivan R. [1 ]
机构
[1] Univ British Columbia, Sch Biomed Engn, Life Sci Inst, Dept Cellular & Physiol Sci, 2350 Hlth Sci Mall, Vancouver, BC V6T 1Z3, Canada
[2] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
基金
加拿大健康研究院;
关键词
Gp78 ubiquitin ligase; Mitochondria; Mitophagy; Reactive oxygen species; GFP-mRFP tandem fluorescent-tagged LC3; Spot detection; SPECHT; AUTOPHAGIC FLUX; CANCER-CELLS; LIGASE GP78; PINK1; PARKIN; MECHANISMS; PROTEIN; STRESS; BNIP3; PHOSPHORYLATION;
D O I
10.1007/s00018-022-04585-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria are major sources of cytotoxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, that when uncontrolled contribute to cancer progression. Maintaining a finely tuned, healthy mitochondrial population is essential for cellular homeostasis and survival. Mitophagy, the selective elimination of mitochondria by autophagy, monitors and maintains mitochondrial health and integrity, eliminating damaged ROS-producing mitochondria. However, mechanisms underlying mitophagic control of mitochondrial homeostasis under basal conditions remain poorly understood. E3 ubiquitin ligase Gp78 is an endoplasmic reticulum membrane protein that induces mitochondrial fission and mitophagy of depolarized mitochondria. Here, we report that CRISPR/Cas9 knockout of Gp78 in HT-1080 fibrosarcoma cells increased mitochondrial volume, elevated ROS production and rendered cells resistant to carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-induced mitophagy. These effects were phenocopied by knockdown of the essential autophagy protein ATG5 in wild-type HT-1080 cells. Use of the mito-Keima mitophagy probe confirmed that Gp78 promoted both basal and damage-induced mitophagy. Application of a spot detection algorithm (SPECHT) to GFP-mRFP tandem fluorescent-tagged LC3 (tfLC3)-positive autophagosomes reported elevated autophagosomal maturation in wild-type HT-1080 cells relative to Gp78 knockout cells, predominantly in proximity to mitochondria. Mitophagy inhibition by either Gp78 knockout or ATG5 knockdown reduced mitochondrial potential and increased mitochondrial ROS. Live cell analysis of tfLC3 in HT-1080 cells showed the preferential association of autophagosomes with mitochondria of reduced potential. Xenograft tumors of HT-1080 knockout cells show increased labeling for mitochondria and the cell proliferation marker Ki67 and reduced labeling for the TUNEL cell death reporter. Basal Gp78-dependent mitophagic flux is, therefore, selectively associated with reduced potential mitochondria promoting maintenance of a healthy mitochondrial population, limiting ROS production and tumor cell proliferation.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Basal Gp78-dependent mitophagy promotes mitochondrial health and limits mitochondrial ROS
    Parsa Alan
    Kurt R. Vandevoorde
    Bharat Joshi
    Ben Cardoen
    Guang Gao
    Yahya Mohammadzadeh
    Ghassan Hamarneh
    Ivan R. Nabi
    Cellular and Molecular Life Sciences, 2022, 79
  • [2] Caveolin-1 promotes mitochondrial health and limits mitochondrial ROS through ROCK/AMPK regulation of basal mitophagic flux
    Timmins, Logan R.
    Ortiz-Silva, Milene
    Joshi, Bharat
    Li, Y. Lydia
    Dickson, Fiona H.
    Wong, Timothy H.
    Vandevoorde, Kurt R.
    Nabi, Ivan R.
    FASEB JOURNAL, 2024, 38 (01)
  • [3] The interplay between mitophagy and mitochondrial ROS in acute lung injury
    Zhong, Yizhi
    Xia, Siwei
    Wang, Gaojian
    Liu, Qinxue
    Ma, Fengjie
    Yu, Yijin
    Zhang, Yaping
    Qian, Lu
    Hu, Li
    Xie, Junran
    MITOCHONDRION, 2024, 78
  • [4] Mitochondrial APE1 promotes cisplatin resistance by downregulating ROS in osteosarcoma
    Liu, Yufeng
    Zhang, Zhimin
    Li, Qing
    Zhang, Liang
    Cheng, Yi
    Zhong, Zhaoyang
    ONCOLOGY REPORTS, 2020, 44 (02) : 499 - 508
  • [5] Mitochondrial fragmentation caused by phenanthroline promotes mitophagy
    Park, So Jung
    Shin, Ji Hyun
    Kim, Eun Sung
    Jo, Yoon Kyung
    Kim, Jung Ho
    Hwang, Jung Jin
    Kim, Jin Cheon
    Cho, Dong-Hyung
    FEBS LETTERS, 2012, 586 (24) : 4303 - 4310
  • [6] Mitophagy Unveiled: Exploring the Nexus of Mitochondrial Health and Neuroendocrinopathy
    Oyovwi, Mega Obukohwo
    Ugwuishi, Emeka Williams
    Udi, Onoriode Andrew
    Uchechukwu, Gregory Joseph
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2024, 74 (04)
  • [7] Mitochondrial quality surveillance: mitophagy in cardiovascular health and disease
    Diao, Rachel Y.
    Gustafsson, Asa B.
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2022, 322 (02): : C218 - C230
  • [8] Mitochondrial Oxidative Stress and Mitophagy Activation Contribute to TNF-Dependent Impairment of Myogenesis
    Chernyavskij, Daniil A. A.
    Pletjushkina, Olga Yu.
    Kashtanova, Anastasia V. V.
    Galkin, Ivan I. I.
    Karpukhina, Anna
    Chernyak, Boris V. V.
    Vassetzky, Yegor S. S.
    Popova, Ekaterina N. N.
    ANTIOXIDANTS, 2023, 12 (03)
  • [9] Ginkgolic Acids Impair Mitochondrial Function by Decreasing Mitochondrial Biogenesis and Promoting FUNDC1-Dependent Mitophagy
    Wang, Wenjun
    Wang, Miaomiao
    Ruan, Yu
    Tan, Junyang
    Wang, Hao
    Yang, Tao
    Li, Jianshuang
    Zhou, Qinghua
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2019, 67 (36) : 10097 - 10106
  • [10] Mitophagy in maintaining skeletal muscle mitochondrial proteostasis and metabolic health with ageing
    Drake, Joshua C.
    Yan, Zhen
    JOURNAL OF PHYSIOLOGY-LONDON, 2017, 595 (20): : 6391 - 6399