Variational approximation of functionals defined on 1-dimensional connected sets in Rn

被引:3
作者
Bonafini, Mauro [1 ]
Orlandi, Giandomenico [2 ]
Oudet, Edouard [3 ]
机构
[1] Tech Univ Munich, Fak Math, Garching, Germany
[2] Univ Verona, Dipartimento Informat, Verona, Italy
[3] Univ Grenoble Alpes, Lab Jean Kuntzmann, Grenoble, France
关键词
Calculus of variations; geometric measure theory; Gamma-convergence; convex relaxation; Gilbert-Steiner problem; PHASE-FIELD APPROXIMATION; STEINER PROBLEM;
D O I
10.1515/acv-2019-0031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Euclidean Steiner tree problem and, more generally, (single sink) Gilbert-Steiner problems as prototypical examples of variational problems involving 1-dimensional connected sets in R-n. Following the analysis for the planar case presented in [M. Bonafini, G. Orlandi and E. Oudet, Variational approximation of functionals defined on 1-dimensional connected sets: The planar case, SIAM J. Math. Anal. 50 (2018), no. 6, 6307-6332], we provide a variational approximation through Ginzburg-Landau type energies proving a Gamma-convergence result for n >= 3.
引用
收藏
页码:541 / 553
页数:13
相关论文
共 17 条
  • [1] Variational convergence for functionals of Ginzburg-Landau type
    Alberti, G
    Baldo, S
    Orlandi, G
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (05) : 1411 - 1472
  • [2] Functions with prescribed singularities
    Alberti, G
    Baldo, S
    Orlandi, G
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2003, 5 (03) : 275 - 311
  • [3] Bernot M, 2009, LECT NOTES MATH, V1955, P1, DOI 10.1007/978-3-540-69315-4
  • [4] Bonafini M., 2018, CONVEX APPROACH GILB
  • [5] VARIATIONAL APPROXIMATION OF FUNCTIONALS DEFINED ON 1-DIMENSIONAL CONNECTED SETS: THE PLANAR CASE
    Bonafini, Mauro
    Orlandi, Giandomenico
    Oudet, Edouard
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (06) : 6307 - 6332
  • [6] NUMERICAL APPROXIMATION OF THE STEINER PROBLEM IN DIMENSION 2 AND 3
    Bonnivard, Matthieu
    Bretin, Elie
    Lemenant, Antoine
    [J]. MATHEMATICS OF COMPUTATION, 2020, 89 (321) : 1 - 43
  • [7] On a phase field approximation of the planar Steiner problem: Existence, regularity, and asymptotic of minimizers
    Bonnivard, Matthieu
    Lemenant, Antoine
    Millot, Vincent
    [J]. INTERFACES AND FREE BOUNDARIES, 2018, 20 (01) : 69 - 106
  • [8] APPROXIMATION OF LENGTH MINIMIZATION PROBLEMS AMONG COMPACT CONNECTED SETS
    Bonnivard, Matthieu
    Lemenant, Antoine
    Santambrogio, Filippo
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (02) : 1489 - 1529
  • [9] Chambolle A., 2019, VARIATIONAL APPROXIM
  • [10] A phase-field approximation of the Steiner problem in dimension two
    Chambolle, Antonin
    Ferrari, Luca Alberto Davide
    Merlet, Benoit
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2019, 12 (02) : 157 - 179