On Elementary Amenable Bounded Automata Groups

被引:0
作者
Juschenko, Kate [1 ]
Steinberg, Benjamin [2 ]
Wesolek, Phillip [3 ]
机构
[1] Univ Texas Austin, Dept Math, 2515 Speedway C1200, Austin, TX 78712 USA
[2] CUNY, Dept Math, 160 Convent Ave, New York, NY 10031 USA
[3] Zendesk, Boston, MA 02101 USA
关键词
AMENABILITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are several natural families of groups acting on rooted trees for which every member is known to be amenable. It is, however, unclear what the elementary amenable members of these families look like. Towards clarifying this situation, we here study elementary amenable bounded automata groups. We are able to isolate the elementary amenable bounded automata groups in three natural subclasses of bounded automata groups. In particular, we show that iterated monodromy groups of post-critically finite polynomials are either virtually abelian or not elementary amenable.
引用
收藏
页码:2479 / 2526
页数:48
相关论文
共 35 条
  • [1] Non-elementary amenable subgroups of automata groups
    Juschenko, Kate
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2018, 10 (01) : 35 - 45
  • [2] γ-Bounded representations of amenable groups
    Le Merdy, Christian
    ADVANCES IN MATHEMATICS, 2010, 224 (04) : 1641 - 1671
  • [3] Amenable groups without finitely presented amenable covers
    Benli, Mustafa Goekhan
    Grigorchuk, Rostislav
    de la Harpe, Pierre
    BULLETIN OF MATHEMATICAL SCIENCES, 2013, 3 (01) : 73 - 131
  • [4] THE MYHILL PROPERTY FOR CELLULAR AUTOMATA ON AMENABLE SEMIGROUPS
    Ceccherini-Silberstein, Tullio
    Coornaert, Michel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (01) : 327 - 339
  • [5] Leptin Densities in Amenable Groups
    Pogorzelski, Felix
    Richard, Christoph
    Strungaru, Nicolae
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (06)
  • [6] Amenable discrete quantum groups
    Tomatsu, Reiji
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (04) : 949 - 964
  • [7] Leptin Densities in Amenable Groups
    Felix Pogorzelski
    Christoph Richard
    Nicolae Strungaru
    Journal of Fourier Analysis and Applications, 2022, 28
  • [8] On sofic approximations of non amenable groups
    Hayes, Ben
    Elayavalli, Srivatsav Kunnawalkam
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (02)
  • [9] Uniformly finite homology and amenable groups
    Blank, Matthias
    Diana, Francesca
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (01): : 467 - 492
  • [10] Extensions of amenable groups by recurrent groupoids
    Juschenko, Kate
    Nekrashevych, Volodymyr
    de la Salle, Mikael
    INVENTIONES MATHEMATICAE, 2016, 206 (03) : 837 - 867