Propagation and reflection of singularities for the nonlinear Schrodinger equation

被引:6
作者
Szeftel, J [1 ]
机构
[1] Univ Paris 13, LAGA UMR 7539, Inst Galilee, F-93430 Villetaneuse, France
关键词
D O I
10.5802/aif.2108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a paradifferential calculus well-suited to the Schrodinger equation which allows us to prove a result on propagation of singularities for the nonlinear Schrodinger equation by adapting Bony's method. We also construct the tangential version of the previous paradifferential calculus which allows us to prove a result on reflection of singularities for the nonlinear Schrodinger equation. We then use this result to compute the Dirichlet to Neumann map of the nonlinear Schrodinger equation.
引用
收藏
页码:573 / +
页数:101
相关论文
共 17 条
  • [1] ALABIDI A, 1985, CRAS 1, V300
  • [2] BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
  • [3] Chemin J.-Y, 1995, Asterisque, V230
  • [4] Chihara H., 1995, MATH JAPONICA, V42, P35
  • [5] Delort PJM, 2001, ANN SCI ECOLE NORM S, V34, P1
  • [6] DEMONVEL LB, 1975, LECT NOTES MATH, V459, P1
  • [7] HOrmander L., 1969, Linear Partial Differential Operators, V3rd
  • [8] HORMANDER L, 1987, LECT NONLINEAR HYPER
  • [9] Smoothing effects and local existence theory for the generalized nonlinear Schrodinger equations
    Kenig, CE
    Ponce, G
    Vega, L
    [J]. INVENTIONES MATHEMATICAE, 1998, 134 (03) : 489 - 545
  • [10] Lascar R., 1977, ANN I FOURIER, V27, P79