Approximately spectrum-preserving maps

被引:15
作者
Alaminos, J. [1 ]
Extremera, J. [1 ]
Villena, A. R. [1 ]
机构
[1] Univ Granada, Dept Anal Matemat, Fac Ciencias, E-18071 Granada, Spain
关键词
Spectrum; Pseudospectrum; Gleason-Kahane-Zelazko theorem; Kaplansky's problem; Spectrum preserving map; Approximately multiplicative functional; Approximately multiplicative map; Homomorphism; Anti-homomorphism; Standard operator algebra; LINEAR-MAPS; BANACH-ALGEBRAS; ADDITIVE MAPS; INVERTIBILITY; OPERATORS; MAPPINGS; MINIMUM;
D O I
10.1016/j.jfa.2011.02.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X and Y be superreflexive complex Banach spaces and let B(X) and B(Y) be the Banach algebras of all bounded linear operators on X and Y, respectively. If a bijective linear map Phi : B(X) -> B(Y) almost preserves the spectra, then it is almost multiplicative or anti-multiplicative. Furthermore, in the case where X = Y is a separable complex Hilbert space, such a map is a small perturbation of an automorphism or an anti-automorphism. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:233 / 266
页数:34
相关论文
共 42 条
[21]   SPECTRUM-PRESERVING LINEAR-MAPS [J].
JAFARIAN, AA ;
SOUROUR, AR .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 66 (02) :255-261
[22]  
JAROSZ K, 1985, LECT NOTES MATH, V1120, P1
[23]  
JOHNSON BE, 1988, J LOND MATH SOC, V37, P294
[24]   APPROXIMATELY MULTIPLICATIVE FUNCTIONALS [J].
JOHNSON, BE .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 34 :489-510
[25]   CONTINUITY OF GENERALIZED HOMOMORPHISMS [J].
JOHNSON, BE .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1987, 19 :67-71
[26]  
KAPLANSKY I, 1970, CBMS REG C SER MATH, V1
[27]   Almost multiplicative functions on commutative Banach algebras [J].
Kulkarni, S. H. ;
Sukumar, D. .
STUDIA MATHEMATICA, 2010, 197 (01) :93-99
[28]   Linear preserver problems [J].
Li, CK ;
Pierce, S .
AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (07) :591-605
[29]   ELEMENTARY OPERATORS ON PRIME C-STAR-ALGEBRAS .1. [J].
MATHIEU, M .
MATHEMATISCHE ANNALEN, 1989, 284 (02) :223-244
[30]   First results on spectrally bounded operators [J].
Mathieu, M ;
Schick, GJ .
STUDIA MATHEMATICA, 2002, 152 (02) :187-199