Approximately spectrum-preserving maps

被引:15
作者
Alaminos, J. [1 ]
Extremera, J. [1 ]
Villena, A. R. [1 ]
机构
[1] Univ Granada, Dept Anal Matemat, Fac Ciencias, E-18071 Granada, Spain
关键词
Spectrum; Pseudospectrum; Gleason-Kahane-Zelazko theorem; Kaplansky's problem; Spectrum preserving map; Approximately multiplicative functional; Approximately multiplicative map; Homomorphism; Anti-homomorphism; Standard operator algebra; LINEAR-MAPS; BANACH-ALGEBRAS; ADDITIVE MAPS; INVERTIBILITY; OPERATORS; MAPPINGS; MINIMUM;
D O I
10.1016/j.jfa.2011.02.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X and Y be superreflexive complex Banach spaces and let B(X) and B(Y) be the Banach algebras of all bounded linear operators on X and Y, respectively. If a bijective linear map Phi : B(X) -> B(Y) almost preserves the spectra, then it is almost multiplicative or anti-multiplicative. Furthermore, in the case where X = Y is a separable complex Hilbert space, such a map is a small perturbation of an automorphism or an anti-automorphism. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:233 / 266
页数:34
相关论文
共 42 条
[1]   Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras [J].
Aupetit, B .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 :917-924
[2]  
Aupetit B, 1998, BANACH ALGEBRAS '97, P55
[3]  
AUPETIT B., 1979, Lecture Notes in Mathematics, V735
[4]  
Aupetit B., 1991, A Primer on Spectral Theory
[5]   Linear maps preserving the essential spectral radius [J].
Bendaoud, M. ;
Bourhim, A. ;
Sarih, M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (04) :1041-1045
[6]   Linear maps preserving the minimum and reduced minimum moduli [J].
Bourhim, A. ;
Burgos, A. ;
Shulman, V. S. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (01) :50-66
[7]   LINEAR MAPS PRESERVING THE MINIMUM MODULUS [J].
Bourhim, Abdellatif ;
Burgos, Maria .
OPERATORS AND MATRICES, 2010, 4 (02) :245-256
[8]   Linear maps preserving the spectral radius [J].
Bresar, M ;
Semrl, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 142 (02) :360-368
[9]   An extension of the Gleason-Kahane-Zelazko theorem: A possible approach to Kaplansky's problem [J].
Bresar, Matej ;
Semrl, Peter .
EXPOSITIONES MATHEMATICAE, 2008, 26 (03) :269-277
[10]  
Chernoff P. R., 1973, Journal of Functional Analysis, V12, P275, DOI 10.1016/0022-1236(73)90080-3