TENSOR DECOMPOSITION, PARAFERMIONS, LEVEL-RANK DUALITY, AND RECIPROCITY LAW FOR VERTEX OPERATOR ALGEBRAS

被引:6
作者
Jiang, Cuipo [1 ]
Lin, Zongzhu [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
关键词
W-ALGEBRAS; MODULAR-INVARIANCE; FUSION RULES; VIRASORO; REPRESENTATIONS; AFFINE; RATIONALITY; VARIETIES; CURRENTS;
D O I
10.1090/tran/8207
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a semisimple Lie algebra sl(n), the basic representation L-(sln) over cap (1, 0) of the affine Lie algebra (sl(n)) over cap is a lattice vertex operator algebra. The first main result of the paper is to prove that the commutant vertex operator algebra of L-(sln) over cap (l, 0) in the l-fold tensor product L-(sln) over cap (1, 0)(circle times l) is isomorphic to the parafermion vertex operator algebra K(sl(l), n), which is the commutant of the Heisenberg vertex operator algebra L-(h) over cap (n, 0) in L-(sll) over cap (n, 0). The result provides a version of level-rank duality. The second main result of the paper is to prove more general version of the first result that the commutant of L-(sln) over cap(l(1) + ... + l(s), 0) in L-(sln) over cap(l(1), 0) circle times ... circle times L-(sln) over cap(l(s), 0) is isomorphic to the commutant of the vertex operator algebra generated by a Levi Lie subalgebra of sl(l1) + ... + l(s) corresponding to the composition (l(1), ... , l(s)) in the rational vertex operator algebra L(sl) over cap l1 + ... + ls (n, 0). This general version also resembles a version of reciprocity law discussed by Howe in the context of reductive Lie groups. In the course of the proof of the main results, certain Howe duality pairs also appear in the context of vertex operator algebras.
引用
收藏
页码:8325 / 8352
页数:28
相关论文
共 72 条
[1]   Fusion rules for the vertex operator algebras M(1)+ and VL+ [J].
Abe, T ;
Dong, CY ;
Li, HS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 253 (01) :171-219
[2]   Fusion rules for the charge conjugation orbifold [J].
Abe, T .
JOURNAL OF ALGEBRA, 2001, 242 (02) :624-655
[3]   THE IRREDUCIBLE MODULES AND FUSION RULES FOR THE PARAFERMION VERTEX OPERATOR ALGEBRAS [J].
Ai, Chunrui ;
Dong, Chongying ;
Jiao, Xiangyu ;
Ren, Li .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (08) :5963-5981
[4]   LEVEL-RANK DUALITY IN NON-UNITARY COSET THEORIES [J].
ALTSCHULER, D ;
BAUER, M ;
SALEUR, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (16) :L789-L793
[5]   THE BRANCHING-RULES OF CONFORMAL EMBEDDINGS [J].
ALTSCHULER, D ;
BAUER, M ;
ITZYKSON, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (02) :349-364
[6]  
[Anonymous], 1991, P S PURE MATH
[7]  
[Anonymous], 1988, Pure and Applied Mathematics
[8]  
[Anonymous], 1993, PROG MATH
[9]   W-algebras as coset vertex algebras [J].
Arakawa, Tomoyuki ;
Creutzig, Thomas ;
Linshaw, Andrew R. .
INVENTIONES MATHEMATICAE, 2019, 218 (01) :145-195
[10]   PARAFERMION VERTEX OPERATOR ALGEBRAS AND W-ALGEBRAS [J].
Arakawa, Tomoyuki ;
Lam, Ching Hung ;
Yamada, Hiromichi .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (06) :4277-4301