LUCK-Linear Correlation Clustering Using Cluster Algorithms and a kNN based Distance Function

被引:4
作者
Beer, Anna [1 ]
Kazempour, Daniyal [1 ]
Stephan, Lisa [1 ]
Seidl, Thomas [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Munich, Germany
来源
SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT (SSDBM 2019) | 2019年
关键词
Linear Correlation Clustering; Clustering; kNN;
D O I
10.1145/3335783.3335801
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
LUCK allows to use any distance-based clustering algorithm to find linear correlated data. For that a novel distance function is introduced, which takes the distribution of the kNN of points into account and corresponds to the probability of two points being part of the same linear correlation. In this work in progress we tested the distance measure with DBSCAN and k-Means comparing it to the well-known linear correlation clustering algorithms ORCLUS, 4C, COPAC, LMCLUS, and CASH, receiving good results for difficult synthetic data sets containing crossing or non-continuous correlations.
引用
收藏
页码:181 / 184
页数:4
相关论文
共 11 条
  • [1] Achtert Elke, 2007, 2007 International Conference on Scientific and Statistical Database Management, DOI 10.1109/SSDBM.2007.21
  • [2] Achtert E, 2007, PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, P413
  • [3] Aggarwal CC, 2000, SIGMOD REC, V29, P70, DOI 10.1145/335191.335383
  • [4] [Anonymous], 2006, 18 INT C SCI STAT DA
  • [5] [Anonymous], 2008, Statistical Analysis and Data Mining, DOI [DOI 10.1002/SAM.10012, DOI 10.1002/sam.10012]
  • [6] Ester M., 1996, P 2 INT C KNOWL DISC
  • [7] Linear manifold clustering in high dimensional spaces by stochastic search
    Haralick, Robert
    Harpaz, Rave
    [J]. PATTERN RECOGNITION, 2007, 40 (10) : 2672 - 2684
  • [8] hm C. Bo, 2004, SIGMOD, P455, DOI DOI 10.1145/1007568.1007620
  • [9] Subspace clustering
    Kriegel, Hans-Peter
    Kroeger, Peer
    Zimek, Arthur
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2012, 2 (04) : 351 - 364
  • [10] LLOYD SP, 1982, IEEE T INFORM THEORY, V28, P129, DOI 10.1109/TIT.1982.1056489