Unsupervised Learning for Automated Detection of Coronary Artery Disease Subgroups

被引:24
作者
Flores, Alyssa M. [1 ]
Schuler, Alejandro [2 ]
Eberhard, Anne Verena [1 ]
Olin, Jeffrey W. [3 ]
Cooke, John P. [4 ]
Leeper, Nicholas J. [1 ,5 ,6 ]
Shah, Nigam H. [2 ]
Ross, Elsie G. [1 ,2 ,6 ]
机构
[1] Stanford Univ, Dept Surg, Div Vasc Surg, Sch Med, Stanford, CA 94305 USA
[2] Stanford Univ, Ctr Biomed Informat Res, Stanford, CA 94305 USA
[3] Icahn Sch Med Mt Sinai, Zena & Michael A Wiener Cardiovasc Inst, Marie Josee & Henry R Kravis Ctr Cardiovasc Hlth, New York, NY 10029 USA
[4] Houston Methodist Res Inst, Dept Cardiovasc Sci, Houston, TX USA
[5] Stanford Univ, Div Cardiovasc Med, Dept Med, Sch Med, Stanford, CA 94305 USA
[6] Stanford Cardiovasc Inst, Stanford, CA USA
来源
JOURNAL OF THE AMERICAN HEART ASSOCIATION | 2021年 / 10卷 / 23期
基金
美国国家卫生研究院;
关键词
cluster analysis; coronary artery disease; machine learning; phenotype discovery; ANKLE-BRACHIAL INDEX; MORTALITY RISK PREDICTION; HEART-DISEASE; CARDIOVASCULAR RISK; GENETIC RISK; ASSOCIATION; VALIDATION; PHENOTYPES; METAANALYSIS; OUTCOMES;
D O I
10.1161/JAHA.121.021976
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND: The promise of precision population health includes the ability to use robust patient data to tailor prevention and care to specific groups. Advanced analytics may allow for automated detection of clinically informative subgroups that account for clinical, genetic, and environmental variability. This study sought to evaluate whether unsupervised machine learning approaches could interpret heterogeneous and missing clinical data to discover clinically important coronary artery disease subgroups. METHODS AND RESULTS: The Genetic Determinants of Peripheral Arterial Disease study is a prospective cohort that includes individuals with newly diagnosed and/or symptomatic coronary artery disease. We applied generalized low rank modeling and K--means cluster analysis using 155 phenotypic and genetic variables from 1329 participants. Cox proportional hazard models were used to examine associations between clusters and major adverse cardiovascular and cerebrovascular events and all-cause mortality. We then compared performance of risk stratification based on clusters and the American College of Cardiology/American Heart Association pooled cohort equations. Unsupervised analysis identified 4 phenotypically and prognostically distinct clusters. All-cause mortality was highest in cluster 1 (oldest/most comorbid; 26%), whereas major adverse cardiovascular and cerebrovascular event rates were highest in cluster 2 (youngest/multiethnic; 41%). Cluster 4 (middle-aged/ healthiest behaviors) experienced more incident major adverse cardiovascular and cerebrovascular events (30%) than cluster 3 (middle-aged/lowest medication adherence; 23%), despite apparently similar risk factor and lifestyle profiles. In comparison with the pooled cohort equations, cluster membership was more informative for risk assessment of myocardial infarction, stroke, and mortality. CONCLUSIONS: Unsupervised clustering identified 4 unique coronary artery disease subgroups with distinct clinical trajectories. Flexible unsupervised machine learning algorithms offer the ability to meaningfully process heterogeneous patient data and provide sharper insights into disease characterization and risk assessment.
引用
收藏
页数:33
相关论文
共 45 条
  • [21] Incorporating a Genetic Risk Score Into Coronary Heart Disease Risk Estimates Effect on Low-Density Lipoprotein Cholesterol Levels (the MI-GENES Clinical Trial)
    Kullo, Iftikhar J.
    Jouni, Hayan
    Austin, Erin E.
    Brown, Sherry-Ann
    Kruisselbrink, Teresa M.
    Isseh, Iyad N.
    Haddad, Raad A.
    Marroush, Tariq S.
    Shameer, Khader
    Olson, Janet E.
    Broeckel, Ulrich
    Green, Robert C.
    Schaid, Daniel J.
    Montori, Victor M.
    Bailey, Kent R.
    [J]. CIRCULATION, 2016, 133 (12) : 1181 - 1188
  • [22] Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells
    Lawson, Devon A.
    Bhakta, Nirav R.
    Kessenbrock, Kai
    Prummel, Karin D.
    Yu, Ying
    Takai, Ken
    Zhou, Alicia
    Eyob, Henok
    Balakrishnan, Sanjeev
    Wang, Chih-Yang
    Yaswen, Paul
    Goga, Andrei
    Werb, Zena
    [J]. NATURE, 2015, 526 (7571) : 131 - +
  • [23] Genetics of Smoking and Risk of Atherosclerotic Cardiovascular Diseases A Mendelian Randomization Study
    Levin, Michael G.
    Klarin, Derek
    Assimes, Themistocles L.
    Freiberg, Matthew S.
    Ingelsson, Erik
    Lynch, Julie
    Natarajan, Pradeep
    O'Donnell, Christopher
    Rader, Daniel J.
    Tsao, Philip S.
    Chang, Kyong-Mi
    Voight, Benjamin F.
    Damrauer, Scott M.
    [J]. JAMA NETWORK OPEN, 2021, 4 (01) : E2034461
  • [24] Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis
    Levine, Jacob H.
    Simonds, Erin F.
    Bendall, Sean C.
    Davis, Kara L.
    Amir, El-ad D.
    Tadmor, Michelle D.
    Litvin, Oren
    Fienberg, Harris G.
    Jager, Astraea
    Zunder, Eli R.
    Finck, Rachel
    Gedman, Amanda L.
    Radtke, Ina
    Downing, James R.
    Pe'er, Dana
    Nolan, Garry P.
    [J]. CELL, 2015, 162 (01) : 184 - 197
  • [25] Lu Jeffrey T, 2004, Rev Cardiovasc Med, V5, P189
  • [26] A common allele on chromosome 9 associated with coronary heart disease
    McPherson, Ruth
    Pertsemlidis, Alexander
    Kavaslar, Nihan
    Stewart, Alexandre F. R.
    Roberts, Robert
    Cox, David R.
    Hinds, David A.
    Pennacchio, Len A.
    Tybjaerg-Hansen, Anne
    Folsom, Aaron R.
    Boerwinkle, Eric
    Hobbs, Helen H.
    Cohen, Jonathan C.
    [J]. SCIENCE, 2007, 316 (5830) : 1488 - 1491
  • [27] Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials
    Mega, Jessica L.
    Stitziel, Nathan O.
    Smith, J. Gustav
    Chasman, Daniel I.
    Caulfield, Mark J.
    Devlin, James J.
    Nordio, Francesco
    Hyde, Craig L.
    Cannon, Christopher P.
    Sacks, Frank M.
    Poulter, Neil R.
    Sever, Peter S.
    Ridker, Paul M.
    Braunwald, Eugene
    Melander, Olle
    Kathiresan, Sekar
    Sabatine, Marc S.
    [J]. LANCET, 2015, 385 (9984) : 2264 - 2271
  • [28] Collider scope: when selection bias can substantially influence observed associations
    Munafo, Marcus R.
    Tilling, Kate
    Taylor, Amy E.
    Evans, David M.
    Smith, George Davey
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2018, 47 (01) : 226 - 235
  • [29] Validation of the Atherosclerotic Cardiovascular Disease Pooled Cohort Risk Equations
    Muntner, Paul
    Colantonio, Lisandro D.
    Cushman, Mary
    Goff, David C., Jr.
    Howard, George
    Howard, Virginia J.
    Kissela, Brett
    Levitan, Emily B.
    Lloyd-Jones, Donald M.
    Safford, Monika M.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2014, 311 (14): : 1406 - 1415
  • [30] Association Between Chromosome 9p21 Variants and the Ankle-Brachial Index Identified by a Meta-Analysis of 21 Genome-Wide Association Studies
    Murabito, Joanne M.
    White, Charles C.
    Kavousi, Maryam
    Sun, Yan V.
    Feitosa, Mary F.
    Nambi, Vijay
    Lamina, Claudia
    Schillert, Arne
    Coassin, Stefan
    Bis, Joshua C.
    Broer, Linda
    Crawford, Dana C.
    Franceschini, Nora
    Frikke-Schmidt, Ruth
    Haun, Margot
    Holewijn, Suzanne
    Huffman, Jennifer E.
    Hwang, Shih-Jen
    Kiechl, Stefan
    Kollerits, Barbara
    Montasser, May E.
    Nolte, Ilja M.
    Rudock, Megan E.
    Senft, Andrea
    Teumer, Alexander
    van der Harst, Pim
    Vitart, Veronique
    Waite, Lindsay L.
    Wood, Andrew R.
    Wassel, Christina L.
    Absher, Devin M.
    Allison, Matthew A.
    Amin, Najaf
    Arnold, Alice
    Asselbergs, Folkert W.
    Aulchenko, Yurii
    Bandinelli, Stefania
    Barbalic, Maja
    Boban, Mladen
    Brown-Gentry, Kristin
    Couper, David J.
    Criqui, Michael H.
    Dehghan, Abbas
    den Heijer, Martin
    Dieplinger, Benjamin
    Ding, Jingzhong
    Doerr, Marcus
    Espinola-Klein, Christine
    Felix, Stephan B.
    Ferrucci, Luigi
    [J]. CIRCULATION-CARDIOVASCULAR GENETICS, 2012, 5 (01) : 100 - 112