Real-time color holographic video reconstruction using multiple-graphics processing unit cluster acceleration and three spatial light modulators

被引:13
作者
Ikawa, Shohei [1 ]
Takada, Naoki [2 ]
Araki, Hiromitsu [3 ]
Niwase, Hiroaki [3 ]
Sannomiya, Hiromi [3 ]
Nakayama, Hirotaka [4 ]
Oikawa, Minoru [2 ]
Mori, Yuichiro [2 ]
Kakue, Takashi [5 ]
Shimobaba, Tomoyoshi [5 ]
Ito, Tomoyoshi [5 ]
机构
[1] Kochi Univ, Fac Sci, Kochi 7808520, Japan
[2] Kochi Univ, Res & Educ Fac, Kochi 7808520, Japan
[3] Kochi Univ, Grad Sch Integrated Arts & Sci, Kochi 7808520, Japan
[4] Natl Astron Observ Japan, Ctr Computat Astrophys, Mitaka, Tokyo 1818588, Japan
[5] Chiba Univ, Grad Sch Engn, Chiba 2638522, Japan
基金
日本学术振兴会;
关键词
color electroholography; real-time electroholography; multiple-graphics processing unit cluster; graphics processing unit; LIQUID-CRYSTAL DISPLAY; ELECTROHOLOGRAPHY; COMPUTATION; SYSTEM; GENERATION; DECOMPOSITION; OBJECT; GPU;
D O I
10.3788/COL202018.010901
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate real-time three-dimensional (3D) color video using a color electroholographic system with a cluster of multiple-graphics processing units (multi-GPU) and three spatial light modulators (SLMs) corresponding respectively to red, green, and blue (RGB)-colored reconstructing lights. The multi-GPU cluster has a computer-generated hologram (CGH) display node containing a GPU, for displaying calculated CGHs on SLMs, and four CGH calculation nodes using 12 GPUs. The GPUs in the CGH calculation node generate CGHs corresponding to RGB reconstructing lights in a 3D color video using pipeline processing. Real-time color electroholography was realized for a 3D color object comprising approximately 21,000 points per color.
引用
收藏
页数:5
相关论文
共 41 条
[1]   Fast time-division color electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator [J].
Araki, Hiromitsu ;
Takada, Naoki ;
Ikawa, Shohei ;
Niwase, Hiroaki ;
Maeda, Yuki ;
Fujiwara, Masato ;
Nakayama, Hirotaka ;
Oikawa, Minoru ;
Kakue, Takashi ;
Shimobaba, Tomoyoshi ;
Ito, Tomoyoshi .
CHINESE OPTICS LETTERS, 2017, 15 (12)
[2]   Real-time time-division color electroholography using a single GPU and a USB module for synchronizing reference light [J].
Araki, Hiromitsu ;
Takada, Naoki ;
Niwase, Hiroaki ;
Ikawa, Shohei ;
Fujiwara, Masato ;
Nakayama, Hirotaka ;
Kakue, Takashi ;
Shimobaba, Tomoyoshi ;
Ito, Tomoyoshi .
APPLIED OPTICS, 2015, 54 (34) :10029-10034
[3]  
Benton S.A., 2008, HOLOGRAPHIC IMAGING, DOI DOI 10.1038/srep06211
[4]   Realization of real-time interactive 3D image holographic display [Invited] [J].
Chen, Jhen-Si ;
Chu, Daping .
APPLIED OPTICS, 2016, 55 (03) :A127-A134
[5]   Acceleration for computer-generated hologram in head-mounted display with effective diffraction area recording method for eyes [J].
Chen, Zhidong ;
Sang, Xinzhu ;
Lin, Qiaojuan ;
Li, Jin ;
Yu, Xunbo ;
Gao, Xin ;
Yan, Binbin ;
Yu, Chongxiu ;
Dou, Wenhua ;
Xiao, Liquan .
CHINESE OPTICS LETTERS, 2016, 14 (08)
[6]   Entanglement-preserving approach for reservoir-induced photonic dissipation in waveguide QED systems [J].
Chen, Zihao ;
Zhou, Yao ;
Shen, Jung-Tsung .
PHYSICAL REVIEW A, 2018, 98 (05)
[7]   Exact dissipation model for arbitrary photonic Fock state transport in waveguide QED systems [J].
Chen, Zihao ;
Zhou, Yao ;
Shen, Jung-Tsung .
OPTICS LETTERS, 2017, 42 (04) :887-890
[8]   Color representation method using RGB color binary-weighted computer-generated holograms [J].
Fujiwara, Masato ;
Takada, Naoki ;
Araki, Hiromitsu ;
Ikawa, Shohei ;
Maeda, Yuki ;
Niwase, Hiroaki ;
Oikawa, Minoru ;
Kakue, Takashi ;
Shimobaba, Tomoyoshi ;
Ito, Tomoyoshi .
CHINESE OPTICS LETTERS, 2018, 16 (08)
[9]   A NEW MICROSCOPIC PRINCIPLE [J].
GABOR, D .
NATURE, 1948, 161 (4098) :777-778
[10]   Holographic reconstruction with a 10-μm pixel-pitch reflective liquid-crystal display by use of a light-emitting diode reference light [J].
Ito, T ;
Shimobaba, T ;
Godo, H ;
Horiuchi, M .
OPTICS LETTERS, 2002, 27 (16) :1406-1408