Quantum throughput: Quantifying quantum-communication devices with homodyne measurements

被引:11
|
作者
Killoran, N. [1 ,2 ]
Haeseler, H. [1 ,2 ,3 ]
Luetkenhaus, N. [1 ,2 ,3 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Univ Erlangen Nurnberg, Max Planck Inst Phys Light, D-91058 Erlangen, Germany
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
ENTANGLEMENT; CRYPTOGRAPHY;
D O I
10.1103/PhysRevA.82.052331
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum communication relies on optical implementations of channels, memories, and repeaters. In the absence of perfect devices, a minimum requirement on real-world devices is that they preserve quantum correlations, meaning that they have some throughput of a quantum-mechanical nature. Previous work has verified throughput in optical devices while using minimal resources. We extend this approach to the quantitative regime. Our method is illustrated in a setting where the input consists of two coherent states while the output is measured by two homodyne measurement settings.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Secure quantum communication with orthogonal states
    Shukla, Chitra
    Banerjee, Anindita
    Pathak, Anirban
    Srikanth, R.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2016, 14 (06)
  • [32] Quantum Secure Direct Communication with Quantum Memory
    Zhang, Wei
    Ding, Dong-Sheng
    Sheng, Yu-Bo
    Zhou, Lan
    Shi, Bao-Sen
    Guo, Guang-Can
    PHYSICAL REVIEW LETTERS, 2017, 118 (22)
  • [33] Quantum communication without the necessity of quantum memories
    Munro, W. J.
    Stephens, A. M.
    Devitt, S. J.
    Harrison, K. A.
    Nemoto, Kae
    NATURE PHOTONICS, 2012, 6 (11) : 777 - 781
  • [34] Quantum broadcast communication and authentication protocol with a quantum one-time pad
    Chang Yan
    Xu Chun-Xiang
    Zhang Shi-Bin
    Yan Li-Li
    CHINESE PHYSICS B, 2014, 23 (01)
  • [35] An Efficient and Novel Semi-Quantum Deterministic Secure Quantum Communication Protocol
    Zhang, Xiaoxue
    Zhou, Ri-Gui
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2022, 61 (04)
  • [36] A one-way quantum amplifier for long-distance quantum communication
    Elemy, Hany
    QUANTUM INFORMATION PROCESSING, 2017, 16 (05)
  • [37] Detecting and eliminating quantum noise of quantum measurements
    Tang, Shuanghong
    Zheng, Congcong
    Wang, Kun
    PHYSICA SCRIPTA, 2024, 99 (10)
  • [38] Quantum control with measurements and quantum Zeno dynamics
    Sorensen, J. J. W. H.
    Dalgaard, M.
    Kiilerich, A. H.
    Molmer, K.
    Sherson, J. F.
    PHYSICAL REVIEW A, 2018, 98 (06)
  • [39] Trading Classical Communication, Quantum Communication, and Entanglement in Quantum Shannon Theory
    Hsieh, Min-Hsiu
    Wilde, Mark M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) : 4705 - 4730
  • [40] Three-Party Quantum Network Communication Protocols Based on Quantum Teleportation
    Zhou, Nan-Run
    Cheng, Hu-Lai
    Gong, Li-Hua
    Li, Chi-Sheng
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (04) : 1387 - 1403