Quantum throughput: Quantifying quantum-communication devices with homodyne measurements

被引:11
|
作者
Killoran, N. [1 ,2 ]
Haeseler, H. [1 ,2 ,3 ]
Luetkenhaus, N. [1 ,2 ,3 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Univ Erlangen Nurnberg, Max Planck Inst Phys Light, D-91058 Erlangen, Germany
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
ENTANGLEMENT; CRYPTOGRAPHY;
D O I
10.1103/PhysRevA.82.052331
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum communication relies on optical implementations of channels, memories, and repeaters. In the absence of perfect devices, a minimum requirement on real-world devices is that they preserve quantum correlations, meaning that they have some throughput of a quantum-mechanical nature. Previous work has verified throughput in optical devices while using minimal resources. We extend this approach to the quantitative regime. Our method is illustrated in a setting where the input consists of two coherent states while the output is measured by two homodyne measurement settings.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Two Quantum Direct Communication Protocols Based on Quantum Search Algorithm
    Xu, Shu-Jiang
    Chen, Xiu-Bo
    Wang, Lian-Hai
    Niu, Xin-Xin
    Yang, Yi-Xian
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (07) : 2436 - 2445
  • [22] QUANTUM DOT HETEROSTRUCTURES FOR SEMICONDUCTOR DEVICES
    Ledentsov, Nikolay N.
    11TH INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION (NANOCON 2019), 2020, : 14 - 21
  • [23] Benchmarking quantum state transfer on quantum devices
    Yi-Te Huang
    Lin, Jhen-Dong
    Ku, Huan-Yu
    Chen, Yueh-Nan
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [24] Quantum Communication Using Semiconductor Quantum Dots
    Vajner, Daniel A.
    Rickert, Lucas
    Gao, Timm
    Kaymazlar, Koray
    Heindel, Tobias
    ADVANCED QUANTUM TECHNOLOGIES, 2022, 5 (07)
  • [25] Visually quantifying single-qubit quantum memory
    Chang, Wan-Guan
    Ju, Chia-Yi
    Chen, Guang-Yin
    Chen, Yueh-Nan
    Ku, Huan-Yu
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [26] Quantum communication scheme based on quantum teleportation
    Yang Lu
    Ma Hong-Yang
    Zheng Chao
    Ding Xiao-Lan
    Gao Jian-Cun
    Long Gui-Lu
    ACTA PHYSICA SINICA, 2017, 66 (23)
  • [27] PHOTONIC ENTANGLEMENT IN QUANTUM COMMUNICATION AND QUANTUM COMPUTATION
    Zeilinger, A.
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF QUANTUM MECHANICS IN THE LIGHT OF NEW TECHNOLOGY, 2009, : 214 - 220
  • [28] QUANTUM SECURE DIRECT COMMUNICATION WITH QUANTUM IDENTIFICATION
    Sun, Zhi-Wei
    Du, Rui-Gang
    Long, Dong-Yang
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2012, 10 (01)
  • [29] About the new architecture of quantum communication
    Enaki, Nicolae
    ADVANCED TOPICS IN OPTOELECTRONICS, MICROELECTRONICS, AND NANOTECHNOLOGIES IV, 2009, 7297
  • [30] Measurement-based quantum communication
    Zwerger, M.
    Briegel, H. J.
    Duer, W.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2016, 122 (03):