Quantum throughput: Quantifying quantum-communication devices with homodyne measurements

被引:11
|
作者
Killoran, N. [1 ,2 ]
Haeseler, H. [1 ,2 ,3 ]
Luetkenhaus, N. [1 ,2 ,3 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Univ Erlangen Nurnberg, Max Planck Inst Phys Light, D-91058 Erlangen, Germany
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
ENTANGLEMENT; CRYPTOGRAPHY;
D O I
10.1103/PhysRevA.82.052331
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum communication relies on optical implementations of channels, memories, and repeaters. In the absence of perfect devices, a minimum requirement on real-world devices is that they preserve quantum correlations, meaning that they have some throughput of a quantum-mechanical nature. Previous work has verified throughput in optical devices while using minimal resources. We extend this approach to the quantitative regime. Our method is illustrated in a setting where the input consists of two coherent states while the output is measured by two homodyne measurement settings.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Quantum-Communication using Multicore Fibers
    Bacco, Davide
    Cozzolino, Daniele
    Biagi, Nicola
    Zavatta, Alessandro
    Oxenlowe, Leif K.
    2021 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2021,
  • [2] Efficient bounds on quantum-communication rates via their reduced variants
    Nowakowski, Marcin L.
    Horodecki, Pawel
    PHYSICAL REVIEW A, 2010, 82 (04):
  • [3] Quantum hacking on quantum key distribution using homodyne detection
    Huang, Jing-Zheng
    Kunz-Jacques, Sebastien
    Jouguet, Paul
    Weedbrook, Christian
    Yin, Zhen-Qiang
    Wang, Shuang
    Chen, Wei
    Guo, Guang-Can
    Han, Zheng-Fu
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [4] Traceable metrology for characterizing quantum optical communication devices
    Chunnilall, C. J.
    Lepert, G.
    Allerton, J. J.
    Hart, C. J.
    Sinclair, A. G.
    METROLOGIA, 2014, 51 (06) : S258 - S266
  • [5] Quantifying quantum correlation via quantum coherence
    Zhou, Guang-Yong
    Huang, Lin-Jian
    Pan, Jun-Ya
    Hu, Li-Yun
    Huang, Jie-Hui
    FRONTIERS OF PHYSICS, 2018, 13 (04)
  • [6] Constraints on Gaussian error channels and measurements for quantum communication
    Kwiatkowski, Alex
    Shojaee, Ezad
    Agrawal, Sristy
    Kyle, Akira
    Rau, Curtis L.
    Glancy, Scott
    Knill, Emanuel
    PHYSICAL REVIEW A, 2023, 107 (04)
  • [7] Quantum noise and quantum communication
    Jennewein, T
    Zeilinger, A
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS II, 2004, 5468 : 1 - 9
  • [8] Quantum noise and quantum communication
    Jennewein, T
    Zeilinger, A
    FLUCTUATIONS AND NOISE IN MATERIALS, 2004, : XXIII - XXXI
  • [9] QUANTUM SECURE DIRECT COMMUNICATION WITH ONLY SEPARATE MEASUREMENTS IN DRIVEN CAVITY QED
    Shan, Chuan-Jia
    Chen, Tao
    Liu, Ji-Bing
    Liu, Tang-Kun
    Huang, Yan-Xia
    Li, Hong
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2010, 8 (03) : 457 - 464
  • [10] Integrated multi-mode waveguide devices for quantum communication
    Ramakrishnan, Rohit K.
    Mishra, Arpita
    Kumar, Preetam
    Kaushalram, Archana
    Samad, Shafeek A.
    Hegde, Gopalkrishna
    Talabattula, Srinivas
    JOURNAL OF OPTICS-INDIA, 2023,