Exact exponential-time algorithms for finding bicliques

被引:7
作者
Binkele-Raible, Daniel [2 ]
Fernau, Henning [2 ]
Gaspers, Serge [3 ]
Liedloff, Mathieu [1 ]
机构
[1] Univ Orleans, LIFO, F-45067 Orleans 2, France
[2] Univ Trier, FB Abt Informat 4, D-54286 Trier, Germany
[3] Vienna Univ Technol, Inst Informat Syst, A-1040 Vienna, Austria
关键词
Graph algorithms; Exact exponential-time algorithms; NP-hard problem; Complete bipartite subgraphs; BIPARTITE; CLIQUE;
D O I
10.1016/j.ipl.2010.10.020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to a large number of applications, bicliques of graphs have been widely considered in the literature. This paper focuses on non-induced bicliques. Given a graph G = (V. E) on n vertices, a pair (X. Y), with X, Y subset of V, X boolean AND Y = mt set, is a non-induced biclique if {x, y} is an element of E for any x is an element of X and y is an element of Y. The NP-complete problem of finding a non-induced (k(1), k(2))-biclique asks to decide whether G contains a non-induced biclique (X. Y) such that vertical bar X vertical bar = k(1) and vertical bar Y vertical bar = k(2). In this paper, we design a polynomial-space O(1.6914(n))-time algorithm for this problem. It is based on an algorithm for bipartite graphs that runs in time O(1.30052(n)). In deriving this algorithm, we also exhibit a relation to the spare allocation problem known from memory chip fabrication. As a byproduct, we show that the constraint bipartite vertex cover problem can be solved in time O(1.30052(n)). (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:64 / 67
页数:4
相关论文
共 50 条
  • [21] Algorithms for finding maximum transitive subtournaments
    Kiviluoto, Lasse
    Ostergard, Patric R. J.
    Vaskelainen, Vesa P.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (02) : 802 - 814
  • [22] Sort and Search: Exact algorithms for generalized domination
    Fomin, Fedor V.
    Golovach, Petr A.
    Kratochvil, Jan
    Kratsch, Dieter
    Liedloff, Mathieu
    INFORMATION PROCESSING LETTERS, 2009, 109 (14) : 795 - 798
  • [23] A Measure & Conquer Approach for the Analysis of Exact Algorithms
    Fomin, Fedor V.
    Grandoni, Fabrizio
    Kratsch, Dieter
    JOURNAL OF THE ACM, 2009, 56 (05)
  • [24] Algorithms for Finding Diameter Cycles of Biconnected Graphs
    Karaata M.H.
    Journal of Computing and Information Technology, 2020, 28 (04) : 225 - 240
  • [25] Two Polynomial-Time Approximation Algorithms for Finding Totally Comfortable Team in Any Given Social Network
    Sudharsanom, Lakshmi Prabha
    Nagarajan, Janakiraman Thenkarai
    INTERNATIONAL CONFERENCE ON HUMANITY AND SOCIAL SCIENCE (ICHSS 2014), 2014, : 139 - 149
  • [26] Exact and Parameterized Algorithms for MAX INTERNAL SPANNING TREE
    Binkele-Raible, Daniel
    Fernau, Henning
    Gaspers, Serge
    Liedloff, Mathieu
    ALGORITHMICA, 2013, 65 (01) : 95 - 128
  • [27] Exact and Parameterized Algorithms for Max Internal Spanning Tree
    Daniel Binkele-Raible
    Henning Fernau
    Serge Gaspers
    Mathieu Liedloff
    Algorithmica, 2013, 65 : 95 - 128
  • [28] Exact and approximation algorithms for the contiguous translocation distance problem
    Constantin, Maria
    Popa, Alexandru
    THEORETICAL COMPUTER SCIENCE, 2025, 1026
  • [29] Faster exact algorithms for some terminal set problems
    Chitnis, Rajesh
    Fomin, Fedor V.
    Lokshtanov, Daniel
    Misra, Pranabendu
    Ramanujan, M. S.
    Saurabh, Saket
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2017, 88 : 195 - 207
  • [30] Exact and approximation algorithms for DNA tag set design
    Mandoiu, Ion I.
    Trinca, Dragos
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2006, 13 (03) : 732 - 744