On similarity solutions and blow-up spectra for a semilinear wave equation

被引:11
作者
Galaktionov, VA [1 ]
Pohozaev, SI
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] MV Keldysh Appl Math Inst, Moscow 125047, Russia
[3] VA Steklov Math Inst, Moscow 117966, Russia
关键词
semilinear wave equation; blow-up; asymptotic behaviour; similarity solutions; fibering method; quadratic pencil; eigenvalue problem;
D O I
10.1090/qam/1999839
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct countable spectra of different asymptotic patterns of self-similar and approximate self-similar types for global and blow-up solutions for the semi-linear wave equation u(tt) = Deltau + \u\(p-1)u, x is an element of R-N, t > 0, in different ranges of exponent p and dimension N.
引用
收藏
页码:583 / 600
页数:18
相关论文
共 47 条
[1]  
ALINHAC S, 1995, BLOW UP NONLINEAR HY
[2]  
Amadori D., 1995, Differential Integral Equations, V8, P1977
[3]  
[Anonymous], 1969, LINEAR DIFFERENTIAL
[4]  
Bateman H., 1953, HIGHER TRANSCENDENTA, V1
[5]  
Birman M. Sh., 1987, SPECTRAL THEORY SELF
[6]   STABLE BLOW-UP PATTERNS [J].
BRESSAN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 98 (01) :57-75
[7]  
BREZIS H, 1986, ARCH RATION MECH AN, V95, P185, DOI 10.1007/BF00251357
[8]   THE BLOW-UP BOUNDARY FOR NONLINEAR-WAVE EQUATIONS [J].
CAFFARELLI, LA ;
FRIEDMAN, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 297 (01) :223-241
[9]   DIFFERENTIABILITY OF THE BLOW-UP CURVE FOR ONE DIMENSIONAL NONLINEAR-WAVE EQUATIONS [J].
CAFFARELLI, LA ;
FRIEDMAN, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 91 (01) :83-98
[10]  
DALECKII JL, 1974, TRANSL MATH MONOGRAP, V43