Rank-one LMI approach to stability of 2-D polynomial matrices

被引:6
作者
Henrion, D
Sebek, M
Bachelier, O
机构
[1] CNRS, Lab Anal & Architecture Syst, F-31077 Toulouse 4, France
[2] Acad Sci Czech Republ, Inst Informat Theory & Automat, CR-18208 Prague, Czech Republic
[3] Czech Tech Univ, Fac Elect Engn, Trnka Lab Automat Control, Prague 16627 6, Czech Republic
关键词
2-D systems; polynomial matrix; stability; LMI;
D O I
10.1023/A:1008464726878
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
New necessary and sufficient conditions are formulated for checking stability of a 2-D polynomial matrix. The conditions are expressed as a non-convex rank-one LMI problem derived from a formulation of the stability problem as a quadratic optimization problem. Sufficient stability conditions expressed as a convex LMI problem are readily derived from this formulation.
引用
收藏
页码:33 / 48
页数:16
相关论文
共 40 条
  • [31] Nesterov Y., 1994, INTERIOR POINT POLYN
  • [32] ROGERS E, P 2 IFAC WORKSH SYST, P420
  • [33] N-D POLYNOMIAL MATRIX EQUATIONS
    SEBEK, M
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (05) : 499 - 502
  • [34] ON 2-D POLE PLACEMENT
    SEBEK, M
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (08) : 819 - 822
  • [35] Sebek M., 1994, THESIS ACAD SCI CZEC
  • [36] SEBEK M, 1992, IEEE T AUTOMATIC CON, V37, P215
  • [37] STABILITY-CRITERIA FOR 2-VARIABLE POLYNOMIALS
    SILJAK, DD
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1975, CA22 (03): : 185 - 189
  • [38] TUAN HD, 1999, P AM CONTR C AACC SA
  • [39] Semidefinite programming
    Vandenberghe, L
    Boyd, S
    [J]. SIAM REVIEW, 1996, 38 (01) : 49 - 95
  • [40] ZHOU K., 1996, Robust and Optimal Control