Rank-one LMI approach to stability of 2-D polynomial matrices

被引:6
作者
Henrion, D
Sebek, M
Bachelier, O
机构
[1] CNRS, Lab Anal & Architecture Syst, F-31077 Toulouse 4, France
[2] Acad Sci Czech Republ, Inst Informat Theory & Automat, CR-18208 Prague, Czech Republic
[3] Czech Tech Univ, Fac Elect Engn, Trnka Lab Automat Control, Prague 16627 6, Czech Republic
关键词
2-D systems; polynomial matrix; stability; LMI;
D O I
10.1023/A:1008464726878
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
New necessary and sufficient conditions are formulated for checking stability of a 2-D polynomial matrix. The conditions are expressed as a non-convex rank-one LMI problem derived from a formulation of the stability problem as a quadratic optimization problem. Sufficient stability conditions expressed as a convex LMI problem are readily derived from this formulation.
引用
收藏
页码:33 / 48
页数:16
相关论文
共 40 条
  • [1] STABILITY AND THE MATRIX LYAPUNOV EQUATION FOR DISCRETE TWO-DIMENSIONAL SYSTEMS
    ANDERSON, BDO
    AGATHOKLIS, P
    JURY, EI
    MANSOUR, M
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (03): : 261 - 267
  • [2] Ben-Tal A., 2000, HDB SEMIDEFINITE PRO, P139
  • [3] Bose N.K., 1984, MULTIDIMENSIONAL SYS
  • [4] Bose N.K., 1982, APPL MULTIDIMENSIONA
  • [5] Boyd S., 1994, LINEAR MATRIX INEQUA, DOI https://doi.org/10.1109/jproc.1998.735454
  • [6] SDPHA: A MATLAB implementation of homogeneous interior-point algorithms for semidefinite programming
    Brixius, N
    Potra, FA
    Sheng, RQ
    [J]. OPTIMIZATION METHODS & SOFTWARE, 1999, 11-2 (1-4) : 583 - 596
  • [7] CHILALI M, 1996, THESIS UFR MATH DECI
  • [8] DAVID J, 1994, PROCEEDINGS OF THE 1994 AMERICAN CONTROL CONFERENCE, VOLS 1-3, P845
  • [9] deOliveira MC, 1997, P AMER CONTR CONF, P72, DOI 10.1109/ACC.1997.611757
  • [10] DUDGEON DE, 1984, PRENTICEHALL SIGNAL