Learning Meta-Distance for Sequences by Learning a Ground Metric via Virtual Sequence Regression

被引:4
作者
Su, Bing [1 ]
Wu, Ying [2 ]
机构
[1] Renmin Univ China, Gaoling Sch Artificial Intelligence, Beijing Key Lab Big Data Management & Anal Method, Beijing 100872, Peoples R China
[2] Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Metric learning; temporal alignment; virtual sequence regression; optimal transport; ACTION RECOGNITION;
D O I
10.1109/TPAMI.2020.3010568
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Distance between sequences is structural by nature because it needs to establish the temporal alignments among the temporally correlated vectors in sequences with varying lengths. Generally, distances for sequences heavily depend on the ground metric between the vectors in sequences to infer the alignments and hence can be viewed as meta-distances upon the ground metric. Learning such meta-distance from multi-dimensional sequences is appealing but challenging. We propose to learn the meta-distance through learning a ground metric for the vectors in sequences. The learning samples are sequences of vectors for which how the ground metric between vectors induces the meta-distance is given. The objective is that the meta-distance induced by the learned ground metric produces large values for sequences from different classes and small values for those from the same class. We formulate the ground metric as a parameter of the meta-distance and regress each sequence to an associated pre-generated virtual sequence w.r.t. the meta-distance, where the virtual sequences for sequences of different classes are well-separated. We develop general iterative solutions to learn both the Mahalanobis metric and the deep metric induced by a neural network for any ground-metric-based sequence distance. Experiments on several sequence datasets demonstrate the effectiveness and efficiency of the proposed methods.
引用
收藏
页码:286 / 301
页数:16
相关论文
共 50 条
[31]   Learning Distance Metric for Support Vector Machine: A Multiple Kernel Learning Approach [J].
Zhang, Weiqi ;
Yan, Zifei ;
Xiao, Gang ;
Zhang, Hongzhi ;
Zuo, Wangmeng .
NEURAL PROCESSING LETTERS, 2019, 50 (03) :2899-2923
[32]   Distance metric learning with local multiple kernel embedding [J].
Zhang, Qingshuo ;
Tsang, Eric C. C. ;
He, Qiang ;
Hu, Meng .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (01) :79-92
[33]   Collaborative Filtering Based on Factorization and Distance Metric Learning [J].
Deng, Yuanle ;
Ye, Ming ;
Xiong, Long .
2019 IEEE 2ND INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION ENGINEERING (ICECE 2019), 2019, :36-41
[34]   Improved Support Vector Machines with Distance Metric Learning [J].
Liu, Yunqiang ;
Caselles, Vicent .
ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, 2011, 6915 :82-91
[35]   LEARNING ADAPTIVE LOCAL DISTANCE METRIC FOR FACE HALLUCINATION [J].
Zou, Yuanpeng ;
Zhou, Fei ;
Liao, Qingmin .
2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, :1967-1971
[36]   Multi-modal deep distance metric learning [J].
Roostaiyan, Seyed Mahdi ;
Imani, Ehsan ;
Baghshah, Mahdieh Soleymani .
INTELLIGENT DATA ANALYSIS, 2017, 21 (06) :1351-1369
[37]   Histogram distance metric learning for facial expression recognition [J].
Sadeghi, Hamid ;
Raie, Abolghasem-A. .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 62 :152-165
[38]   Connecting Factorization and Distance Metric Learning for Social Recommendations [J].
Yu, Junliang ;
Gao, Min ;
Song, Yuqi ;
Zhao, Zehua ;
Rong, Wenge ;
Xiong, Qingyu .
KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2017): 10TH INTERNATIONAL CONFERENCE, KSEM 2017, MELBOURNE, VIC, AUSTRALIA, AUGUST 19-20, 2017, PROCEEDINGS, 2017, 10412 :389-396
[39]   Distance-Metric Learning for Personalized Survival Analysis [J].
Galetzka, Wolfgang ;
Kowall, Bernd ;
Jusi, Cynthia ;
Huessler, Eva-Maria ;
Stang, Andreas ;
Pardo, Leandro .
ENTROPY, 2023, 25 (10)
[40]   Parametric local multiview hamming distance metric learning [J].
Zhai, Deming ;
Liu, Xianming ;
Chang, Hong ;
Zhen, Yi ;
Chen, Xilin ;
Guo, Maozu ;
Gao, Wen .
PATTERN RECOGNITION, 2018, 75 :250-262