Multi-hypercyclic operators are hypercyclic

被引:51
|
作者
Peris, A [1 ]
机构
[1] Univ Politecn Valencia, Dept Matemat Aplicada, ETS Arquitectura, E-46071 Valencia, Spain
关键词
D O I
10.1007/PL00004850
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Herrero conjectured in 1991 that every multi-hypercyclic (respectively, multi-supercylic) operator on a Hilbert space is in fact hypercyclic (respectively, supercyclic). In this article we settle this conjecture in the affirmative even for continuous linear operators defined on arbitrary locally convex spaces. More precisely, we show that, if T : E --> E is a continuous linear operator on a locally convex space E such that there is a finite collection of orbits of T satisfying that each element in E can be arbitrarily approximated by a vector of one of these orbits, then there is a single orbit dense in E. We also prove the corresponding result for a weaker notion of approximation, called supercyclicity(1).
引用
收藏
页码:779 / 786
页数:8
相关论文
共 50 条
  • [21] Syndetically hypercyclic operators
    Peris, A
    Saldivia, L
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 51 (02) : 275 - 281
  • [22] Disjoint hypercyclic operators
    Bernal-Gonzalez, Luis
    STUDIA MATHEMATICA, 2007, 182 (02) : 113 - 131
  • [23] Pathological hypercyclic operators
    Héctor N. Salas
    Archiv der Mathematik, 2006, 86 : 241 - 250
  • [24] Pathological hypercyclic operators
    Salas, HN
    ARCHIV DER MATHEMATIK, 2006, 86 (03) : 241 - 250
  • [25] Hypercyclic conjugate operators
    Petersson, Henrik
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2007, 57 (03) : 413 - 423
  • [26] Syndetically Hypercyclic Operators
    Alfredo Peris
    Luis Saldivia
    Integral Equations and Operator Theory, 2005, 51 : 275 - 281
  • [27] Frequently hypercyclic operators
    Bayart, Frederic
    Grivaux, Sophie
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (11) : 5083 - 5117
  • [28] MULTIPLES OF HYPERCYCLIC OPERATORS
    Badea, Catalin
    Grivaux, Sophie
    Muller, Vladimir
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (04) : 1397 - 1403
  • [29] Hypercyclic sequences of operators
    Leon-Saavedra, Fernando
    Mueller, Vladimir
    STUDIA MATHEMATICA, 2006, 175 (01) : 1 - 18
  • [30] Hypercyclic behaviour of operators in a hypercyclic C0-semigroup
    Conejero, Jose A.
    Muller, V.
    Peris, A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 244 (01) : 342 - 348