A review of experimental work on freezing and melting in confinement is presented. A range of systems, from metal oxide gels to porous glasses to novel nanoporous materials, is discussed. Features such as melting-point depression, hysteresis between freezing and melting, modifications to bulk solid structure and solid-solid transitions are reviewed for substances such as helium, organic fluids, water and metals. Recent work with well characterized assemblies of cylindrical pores like MCM-41 and graphitic microfibres with slit pores has suggested that the macroscopic picture of melting and freezing breaks down in pores of molecular dimensions. Applications of the surface force apparatus to the study of freezing and melting phenomena in confinement are discussed in some detail. This instrument is unique in allowing the study of conditions in a single pore, without the complications of pore blockage and connectivity effects. The results have confirmed the classical picture of melting point depression in larger pores, and allowed the direct observation of capillary condensation of solid from vapour Other results include the measurement of solvation forces across apparently fluid films below the bulk melting point and a solid-like response to shear of films above the bulk melting point. These somewhat contradictory findings highlight the difficulty of using bulk concepts to define the phase state of a substance confined to nanoscale pores.