MIDCAN: A multiple input deep convolutional attention network for Covid-19 diagnosis based on chest CT and chest X-ray

被引:71
作者
Zhang, Yu-Dong [1 ]
Zhang, Zheng [2 ,3 ]
Zhang, Xin [4 ]
Wang, Shui-Hua [5 ]
机构
[1] Univ Leicester, Sch Informat, Leicester LE1 7RH, Leics, England
[2] Harbin Inst Technol, Shenzhen Key Lab Visual Object Detect & Recognit, Shenzhen 518055, Peoples R China
[3] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
[4] Fourth Peoples Hosp Huaian, Dept Med Imaging, Huaian 223002, Jiangsu, Peoples R China
[5] Univ Leicester, Sch Math & Actuarial Sci, Leicester LE1 7RH, Leics, England
基金
英国医学研究理事会;
关键词
Deep learning; Data harmonization; Multiple input; Convolutional neural network; Automatic differentiation; COVID-19; Chest CT; Chest X-ray; Multimodality; CLASSIFICATION;
D O I
10.1016/j.patrec.2021.06.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background: COVID-19 has caused 3.34m deaths till 13/May/2021. It is now still causing confirmed cases and ongoing deaths every day. Method: This study investigated whether fusing chest CT with chest X-ray can help improve the AI's diagnosis performance. Data harmonization is employed to make a homogeneous dataset. We create an end-to-end multiple-input deep convolutional attention network (MIDCAN) by using the convolutional block attention module (CBAM). One input of our model receives 3D chest CT image, and other input receives 2D X-ray image. Besides, multiple-way data augmentation is used to generate fake data on training set. Grad-CAM is used to give explainable heatmap. Results: The proposed MIDCAN achieves a sensitivity of 98.10 +/- 1.88%, a specificity of 97.95 +/- 2.26%, and an accuracy of 98.02 +/- 1.35%. Conclusion: Our MIDCAN method provides better results than 8 state-of-the-art approaches. We demonstrate the using multiple modalities can achieve better results than individual modality. Also, we demonstrate that CBAM can help improve the diagnosis performance. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 16
页数:9
相关论文
共 29 条
[1]   When less is more: regarding the use of chest X-ray instead of computed tomography in screening for pulmonary metastasis in postmolar gestational trophoblastic neoplasia [J].
Braga, Antonio ;
Elias, Kevin Meyer ;
Horowitz, Neil Stuart ;
Berkowitz, Ross Stuart .
BRITISH JOURNAL OF CANCER, 2021, 124 (06) :1033-1034
[2]  
Chen Y., 2020, Computer-Aided Design and Applications, V18, P47, DOI [10.14733/cadaps.2021.S2.47-57, DOI 10.14733/CADAPS.2021.S2.47-57]
[3]   The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation [J].
Chicco, Davide ;
Totsch, Niklas ;
Jurman, Giuseppe .
BIODATA MINING, 2021, 14 (01) :1-22
[4]   Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network [J].
Das, Amit Kumar ;
Ghosh, Sayantani ;
Thunder, Samiruddin ;
Dutta, Rohit ;
Agarwal, Sachin ;
Chakrabarti, Amlan .
PATTERN ANALYSIS AND APPLICATIONS, 2021, 24 (03) :1111-1124
[5]   Machine-learning-based multiple abnormality prediction with large-scale chest computed tomography volumes [J].
Draelos, Rachel Lea ;
Dov, David ;
Mazurowski, Maciej A. ;
Lo, Joseph Y. ;
Henao, Ricardo ;
Rubin, Geoffrey D. ;
Carin, Lawrence .
MEDICAL IMAGE ANALYSIS, 2021, 67
[6]   Novel Feature Selection and Voting Classifier Algorithms for COVID-19 Classification in CT Images [J].
El-kenawy, El-Sayed M. ;
Ibrahim, Abdelhameed ;
Mirjalili, Seyedali ;
Eid, Marwa Metwally ;
Hussein, Sherif E. .
IEEE ACCESS, 2020, 8 :179317-179335
[7]   Chest CT in patients with a moderate or high pretest probability of COVID-19 and negative swab [J].
Giannitto, Caterina ;
Sposta, Federica Mrakic ;
Repici, Alessandro ;
Vatteroni, Giulia ;
Casiraghi, Elena ;
Casari, Erminia ;
Ferraroli, Giorgio Maria ;
Fugazza, Alessandro ;
Sandri, Maria Teresa ;
Chiti, Arturo ;
Luca, Balzarini .
RADIOLOGIA MEDICA, 2020, 125 (12) :1260-1270
[8]   The United Kingdom Joint Committee on Vaccination and Immunisation [J].
Hall, Andrew J. .
VACCINE, 2010, 28 :A54-A57
[9]   Replacing human interpretation of agricultural land in Afghanistan with a deep convolutional neural network [J].
Hamer, A. M. ;
Simms, D. M. ;
Waine, T. W. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (08) :3017-3038
[10]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]