Optimal designs for the prediction of mixed effects in linear mixed models

被引:3
|
作者
Zhou, Xiao-Dong [1 ]
Yue, Rong-Xian [2 ]
Wang, Yun-Juan [3 ]
机构
[1] Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
[2] Shanghai Normal Univ, Coll Math & Sci, Shanghai, Peoples R China
[3] Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear mixed model; optimal design; prediction; random coefficient regression; OPTIMAL POPULATION DESIGNS; REGRESSION MODEL; CRITERIA;
D O I
10.1080/02331888.2021.1975711
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the optimal design problem for predicting a linear combination of fixed and random effects when the variance components in the linear mixed model are known or unknown. New design criteria based on the mean squared error of the predictor are proposed to obtain the exact or continuous optimal designs. For unknown variance components, the uncertainty of their estimators is incorporated into the design criteria. Numerical results indicate the importance of this consideration. Special attention is paid to obtaining optimal designs for predicting individual curves or future observations.
引用
收藏
页码:635 / 659
页数:25
相关论文
共 50 条
  • [1] Robust designs for linear mixed effects models
    Berger, MPF
    Tan, FES
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2004, 53 : 569 - 581
  • [2] D-optimal cohort designs for linear mixed-effects models
    Tekle, Fetene B.
    Tan, Frans E. S.
    Berger, Martijn P. F.
    STATISTICS IN MEDICINE, 2008, 27 (14) : 2586 - 2600
  • [3] Sequential D-optimal designs for generalized linear mixed models
    Sinha, Sanjoy K.
    Xu, Xiaojian
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) : 1394 - 1402
  • [4] D-optimal population designs in linear mixed effects models for multiple longitudinal data
    Jiang, Hongyan
    Yue, Rongxian
    STATISTICAL THEORY AND RELATED FIELDS, 2021, 5 (02) : 88 - 94
  • [5] Optimal tests for random effects in linear mixed models
    Larbi, Yassine Ou
    El Halimi, Rachid
    Akharif, Abdelhadi
    Mellouk, Amal
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (04): : 1185 - 1211
  • [6] Prediction in linear mixed models
    Welham, S
    Cullis, B
    Gogel, B
    Gilmour, A
    Thompson, R
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2004, 46 (03) : 325 - 347
  • [7] The effect of dropout on the efficiency of D-optimal designs of linear mixed models
    Ortega-Azurduy, S. A.
    Tan, F. E. S.
    Berger, M. P. F.
    STATISTICS IN MEDICINE, 2008, 27 (14) : 2601 - 2617
  • [8] D-optimal designs for multi-response linear mixed models
    Liu, Xin
    Yue, Rong-Xian
    Wong, Weng Kee
    METRIKA, 2019, 82 (01) : 87 - 98
  • [9] D-optimal designs for multi-response linear mixed models
    Xin Liu
    Rong-Xian Yue
    Weng Kee Wong
    Metrika, 2019, 82 : 87 - 98
  • [10] Maximin D-optimal designs for longitudinal mixed effects models
    Ouwens, MJNM
    Tan, FES
    Berger, MPF
    BIOMETRICS, 2002, 58 (04) : 735 - 741