An extended isogeometric thin shell analysis based on Kirchhoff-Love theory

被引:325
作者
Nguyen-Thanh, N. [1 ]
Valizadeh, N. [2 ]
Nguyen, M. N. [3 ]
Nguyen-Xuan, H. [4 ]
Zhuang, X. [5 ]
Areias, P. [6 ]
Zi, G. [8 ]
Bazilevs, Y. [7 ]
De Lorenzis, L. [1 ]
Rabczuk, T. [2 ,8 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Appl Mech, D-38106 Braunschweig, Germany
[2] Bauhaus Univ Weimar, Inst Struct Mech, D-99423 Weimar, Germany
[3] Ruhr Univ Bochum, Inst Struct Mech, Bochum, Germany
[4] Sejong Univ, Dept Architectural Engn, Seoul 143747, South Korea
[5] Tongji Univ, Dept Geotech Engn, Shanghai 200092, Peoples R China
[6] Univ Evora, Dept Phys, Evora, Portugal
[7] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA
[8] Korea Univ, Sch Civil Environm & Architectural Engn, Seoul, South Korea
基金
欧洲研究理事会;
关键词
Thin shells; Fracture mechanics; Isogeometric analysis; NURBS; XFEM; XIGA; FINITE-ELEMENT-METHOD; FLUID-STRUCTURE INTERACTION; WIND TURBINE ROTORS; PHANTOM-NODE METHOD; MESHFREE METHOD; 3D SIMULATION; FORMULATION; CRACK; XFEM; REFINEMENT;
D O I
10.1016/j.cma.2014.08.025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An extended isogeometric element formulation (XIGA) for analysis of through-the-thickness cracks in thin shell structures is developed. The discretization is based on Non-Uniform Rational B-Splines (NURBS). The proposed XIGA formulation can reproduce the singular field near the crack tip and the discontinuities across the crack. It is based on the Kirchhoff-Love theory where C-1-continuity of the displacement field is required. This condition is satisfied by the NURBS basis functions. Hence, the formulation eliminates the need of rotational degrees of freedom or the discretization of the director field facilitating the enrichment strategy. The performance and validity of the formulation is tested by several benchmark examples. (C) 2014 Elsevier B. V. All rights reserved.
引用
收藏
页码:265 / 291
页数:27
相关论文
共 81 条
[1]   Analysis of fracture in thin shells by overlapping paired elements [J].
Areias, Pedro M. A. ;
Song, J. H. ;
Belytschko, Ted .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (41-43) :5343-5360
[2]   Non-linear analysis of shells with arbitrary evolving cracks using XFEM [J].
Areias, PMA ;
Belytschko, T .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 62 (03) :384-415
[3]   Isogeometric fluid-structure interaction: theory, algorithms, and computations [J].
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Zhang, Y. .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :3-37
[4]   3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics [J].
Bazilevs, Y. ;
Hsu, M. -C. ;
Akkerman, I. ;
Wright, S. ;
Takizawa, K. ;
Henicke, B. ;
Spielman, T. ;
Tezduyar, T. E. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (1-3) :207-235
[5]   3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades [J].
Bazilevs, Y. ;
Hsu, M. -C. ;
Kiendl, J. ;
Wuechner, R. ;
Bletzinger, K. -U. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (1-3) :236-253
[6]   Isogeometric analysis using T-splines [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Lipton, S. ;
Scott, M. A. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :229-263
[7]   Improved implementation and robustness study of the X-FEM for stress analysis around cracks [J].
Béchet, E ;
Minnebol, H ;
Moës, N ;
Burgardt, B .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 64 (08) :1033-1056
[8]   A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM [J].
Benson, D. J. ;
Bazilevs, Y. ;
De Luycker, E. ;
Hsu, M. -C. ;
Scott, M. ;
Hughes, T. J. R. ;
Belytschko, T. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (06) :765-785
[9]  
Bischoff M, 2004, Encycl Comput Mech
[10]   On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM) [J].
Bordas, Stephane P. A. ;
Natarajan, Sundararajan ;
Kerfriden, Pierre ;
Augarde, Charles Edward ;
Mahapatra, D. Roy ;
Rabczuk, Timon ;
Dal Pont, Stefano .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 86 (4-5) :637-666