GENOMIC SELECTION IN PLANT BREEDING: KNOWLEDGE AND PROSPECTS

被引:345
作者
Lorenz, Aaron J. [1 ]
Chao, Shiaoman [2 ]
Asoro, Franco G. [3 ]
Heffner, Elliot L. [4 ]
Hayashi, Takeshi [5 ]
Iwata, Hiroyoshi [6 ]
Smith, Kevin P. [7 ]
Sorrells, Mark E. [4 ]
Jannink, Jean-Luc [1 ]
机构
[1] USDA ARS, RW Holley Ctr Agr & Hlth, Ithaca, NY 14853 USA
[2] USDA ARS, Biosci Res Lab, Fargo, ND 58105 USA
[3] Iowa State Univ, Dept Agron, Ames, IA USA
[4] Cornell Univ, Dept Plant Breeding & Genet, Ithaca, NY USA
[5] Natl Agr Res Ctr, Data Min & Grid Res Team, Tsukuba, Ibaraki 305, Japan
[6] Univ Tokyo, Bunkyo Ku, Dept Agr & Environm Biol, Grad Sch Agr & Life Sci, Tokyo 113, Japan
[7] Univ Minnesota, Dept Agron & Plant Genet, St Paul, MN USA
来源
ADVANCES IN AGRONOMY, VOL 110 | 2011年 / 110卷
关键词
MARKER-ASSISTED SELECTION; QUANTITATIVE TRAIT LOCI; LINKAGE DISEQUILIBRIUM; GENOMEWIDE SELECTION; RECURRENT SELECTION; SNP DISCOVERY; VARIABLE SELECTION; MOLECULAR MARKERS; MENDELIAN FACTORS; GENETIC VALUE;
D O I
10.1016/B978-0-12-385531-2.00002-5
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
"Genomic selection," the ability to select for even complex, quantitative traits based on marker data alone, has arisen from the conjunction of new high-throughput marker technologies and new statistical methods needed to analyze the data. This review surveys what is known about these technologies, with sections on population and quantitative genetic background, DNA marker development, statistical methods, reported accuracies of genomic selection (GS) predictions, prediction of nonadditive genetic effects, prediction in the presence of subpopulation structure, and impacts of GS on long-term gain. GS works by estimating the effects of many loci spread across the genome. Marker and observation numbers therefore need to scale with the genetic map length in Morgans and with the effective population size of the population under GS. For typical crops, the requirements range from at least 200 to at most 10,000 markers and observations. With that baseline, GS can greatly accelerate the breeding cycle while also using marker information to maintain genetic diversity and potentially prolong gain beyond what is possible with phenotypic selection. With the costs of marker technologies continuing to decline and the statistical methods becoming more routine, the results reviewed here suggest that GS will play a large role in the plant breeding of the future. Our summary and interpretation should prove useful to breeders as they assess the value of GS in the context of their populations and resources.
引用
收藏
页码:77 / 123
页数:47
相关论文
共 151 条
[21]   Development and implementation of high-throughput SNP genotyping in barley [J].
Close, Timothy J. ;
Bhat, Prasanna R. ;
Lonardi, Stefano ;
Wu, Yonghui ;
Rostoks, Nils ;
Ramsay, Luke ;
Druka, Arnis ;
Stein, Nils ;
Svensson, Jan T. ;
Wanamaker, Steve ;
Bozdag, Serdar ;
Roose, Mikeal L. ;
Moscou, Matthew J. ;
Chao, Shiaoman ;
Varshney, Rajeev K. ;
Szuecs, Peter ;
Sato, Kazuhiro ;
Hayes, Patrick M. ;
Matthews, David E. ;
Kleinhofs, Andris ;
Muehlbauer, Gary J. ;
DeYoung, Joseph ;
Marshall, David F. ;
Madishetty, Kavitha ;
Fenton, Raymond D. ;
Condamine, Pascal ;
Graner, Andreas ;
Waugh, Robbie .
BMC GENOMICS, 2009, 10
[22]  
Coors JG, 2006, PLANT BREEDING: ARNEL R HALLAUER INTERNATIONAL SYMPOSIUM, P51
[23]  
COXE KL, 1986, ENCY STAT SCI, V7, P181
[24]   Inbreeding in genome-wide selection [J].
Daetwyler, H. D. ;
Villanueva, B. ;
Bijma, P. ;
Woolliams, J. A. .
JOURNAL OF ANIMAL BREEDING AND GENETICS, 2007, 124 (06) :369-376
[25]   Accuracy of Predicting the Genetic Risk of Disease Using a Genome-Wide Approach [J].
Daetwyler, Hans D. ;
Villanueva, Beatriz ;
Woolliams, John A. .
PLOS ONE, 2008, 3 (10)
[26]   Reproducing kernel Hilbert spaces regression: A general framework for genetic evaluation [J].
de los Campos, G. ;
Gianola, D. ;
Rosa, G. J. M. .
JOURNAL OF ANIMAL SCIENCE, 2009, 87 (06) :1883-1887
[27]   Predicting Quantitative Traits With Regression Models for Dense Molecular Markers and Pedigree [J].
de los Campos, Gustavo ;
Naya, Hugo ;
Gianola, Daniel ;
Crossa, Jose ;
Legarra, Andres ;
Manfredi, Eduardo ;
Weigel, Kent ;
Cotes, Jose Miguel .
GENETICS, 2009, 182 (01) :375-385
[28]   Linkage disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus cattle [J].
de Roos, A. P. W. ;
Hayes, B. J. ;
Spelman, R. J. ;
Goddard, M. E. .
GENETICS, 2008, 179 (03) :1503-1512
[29]   Reliability of Genomic Predictions Across Multiple Populations [J].
de Roos, A. P. W. ;
Hayes, B. J. ;
Goddard, M. E. .
GENETICS, 2009, 183 (04) :1545-1553
[30]   Optimizing selection for quantitative traits with information on an identified locus in outbred populations [J].
Dekkers, JCM ;
van Arendonk, JAM .
GENETICS RESEARCH, 1998, 71 (03) :257-275