Boson sampling with Gaussian measurements

被引:37
作者
Chakhmakhchyan, L. [1 ]
Cerf, N. J. [1 ]
机构
[1] Univ Libre Bruxelles, Ecole polytech Bruxelles, Ctr Quantum Informat & Commun, CP 165, B-1050 Brussels, Belgium
关键词
QUANTUM; CIRCUIT;
D O I
10.1103/PhysRevA.96.032326
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We develop an alternative boson sampling model operating on single-photon states followed by linear interferometry and Gaussian measurements. The hardness proof for simulating such continuous-variable measurements is established in two main steps, making use of the symmetry of quantum evolution under time reversal. Namely, we first construct a twofold version of scattershot boson sampling in which, as opposed to the original proposal, both legs of a collection of two-mode squeezed vacuum states undergo parallel linear-optical transformations. This two fold scattershot model yields, as a corollary, an instance of boson sampling from Gaussian states where photon counting is hard to simulate. Then, a time-reversed setup is used to exhibit a boson sampling model in which the simulation of Gaussian measurements-namely the outcome of eight-port homodyne detection-is proven to be computationally hard. These results illustrate how the symmetry of quantum evolution under time reversal may serve as a tool for analyzing the computational complexity of novel physically motivated computational problems.
引用
收藏
页数:7
相关论文
共 41 条
[1]   BosonSampling with lost photons [J].
Aaronson, Scott ;
Brod, Daniel J. .
PHYSICAL REVIEW A, 2016, 93 (01)
[2]   Characterizing Quantum Properties of a Measurement Apparatus: Insights from the Retrodictive Approach [J].
Amri, Taoufik ;
Laurat, Julien ;
Fabre, Claude .
PHYSICAL REVIEW LETTERS, 2011, 106 (02)
[3]  
[Anonymous], 2013, THEORY COMPUT, DOI DOI 10.4086/toc.2013.v009a004
[4]   BosonSampling is robust against small errors in the network matrix [J].
Arkhipov, Alex .
PHYSICAL REVIEW A, 2015, 92 (06)
[5]   Programmable multimode quantum networks [J].
Armstrong, Seiji ;
Morizur, Jean-Francois ;
Janousek, Jiri ;
Hage, Boris ;
Treps, Nicolas ;
Lam, Ping Koy ;
Bachor, Hans-A. .
NATURE COMMUNICATIONS, 2012, 3
[6]   Polynomial approximation of non-Gaussian unitaries by counting one photon at a time [J].
Arzani, Francesco ;
Treps, Nicolas ;
Ferrini, Giulia .
PHYSICAL REVIEW A, 2017, 95 (05)
[7]   Digitized adiabatic quantum computing with a superconducting circuit [J].
Barends, R. ;
Shabani, A. ;
Lamata, L. ;
Kelly, J. ;
Mezzacapo, A. ;
Heras, U. Las ;
Babbush, R. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Jeffrey, E. ;
Lucero, E. ;
Megrant, A. ;
Mutus, J. Y. ;
Neeley, M. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Solano, E. ;
Neven, H. ;
Martinis, John M. .
NATURE, 2016, 534 (7606) :222-226
[8]   Efficient classical simulation of continuous variable quantum information processes [J].
Bartlett, SD ;
Sanders, BC ;
Braunstein, SL ;
Nemoto, K .
PHYSICAL REVIEW LETTERS, 2002, 88 (09) :4-979044
[9]   Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy [J].
Bremner, Michael J. ;
Jozsa, Richard ;
Shepherd, Dan J. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2126) :459-472
[10]   Photonic Boson Sampling in a Tunable Circuit [J].
Broome, Matthew A. ;
Fedrizzi, Alessandro ;
Rahimi-Keshari, Saleh ;
Dove, Justin ;
Aaronson, Scott ;
Ralph, Timothy C. ;
White, Andrew G. .
SCIENCE, 2013, 339 (6121) :794-798