Open-Cavity in Closed-Cycle Cryostat as a Quantum Optics Platform

被引:15
作者
Vadia, Samarth [1 ,2 ,3 ,4 ]
Scherzer, Johannes [1 ,2 ]
Thierschmann, Holger [3 ]
Schaefermeier, Clemens [3 ]
Dal Savio, Claudio [3 ]
Taniguchi, Takashi [5 ]
Watanabe, Kenji [6 ]
Hunger, David [7 ]
Karraie, Khaled [3 ]
Hoegele, Alexander [1 ,2 ,4 ]
机构
[1] Ludwig Maximilians Univ Munchen, Fak Phys, Munich Quantum Ctr, Geschwister Scholl Pl 1, D-80539 Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Ctr NanoSci CeNS, Geschwister Scholl Pl 1, D-80539 Munich, Germany
[3] Attocube Syst AG, Eglfinger Weg 2, D-85540 Haar, Germany
[4] Munich Ctr Quantum Sci & Technol MCQST, Schellingtr 4, D-80799 Munich, Germany
[5] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[6] Natl Inst Mat Sci, Res Ctr Funct Mat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[7] Karlsruher Inst Technol, Phys Inst, Inst Quanten Mat & Technol, Wolfgang Gaede Str 1, D-76131 Karlsruhe, Germany
来源
PRX QUANTUM | 2021年 / 2卷 / 04期
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
PHOTON; SPINS;
D O I
10.1103/PRXQuantum.2.040318
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The introduction of an optical resonator can enable efficient and precise interaction between a photon and a solid-state emitter. It facilitates the study of strong light-matter interaction, polaritonic physics and presents a powerful interface for quantum communication and computing. A pivotal aspect in the progress of light-matter interaction with solid-state systems is the challenge of combining the requirements of cryogenic temperature and high mechanical stability against vibrations while maintaining sufficient degrees of freedom for in situ tunability. Here, we present a fiber-based open Fabry-Perot cavity in a closed-cycle cryostat exhibiting ultrahigh mechanical stability while providing wide-range tunability in all three spatial directions. We characterize the setup and demonstrate the operation with the root-mean-square cavity-length fluctuation of less than 90 pm at temperature of 6.5 K and integration bandwidth of 100 kHz. Finally, we benchmark the cavity performance by demonstrating the strong-coupling formation of exciton polaritons in monolayer WSe2 with a cooperativity of 1.6. This set of results manifests the open cavity in a closed-cycle cryostat as a versatile and powerful platform for low-temperature cavity QED experiments.
引用
收藏
页数:11
相关论文
共 57 条
  • [1] Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity
    Albrecht, Roland
    Bommer, Alexander
    Deutsch, Christian
    Reichel, Jakob
    Becher, Christoph
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (24)
  • [2] [Anonymous], 1991, Fundamental of Photonics
  • [3] Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric Phase Transition
    Ashida, Yuto
    Imamoglu, Atac
    Faist, Jerome
    Jaksch, Dieter
    Cavalleri, Andrea
    Demler, Eugene
    [J]. PHYSICAL REVIEW X, 2020, 10 (04):
  • [4] A tunable microcavity
    Barbour, Russell J.
    Dalgarno, Paul A.
    Curran, Arran
    Nowak, Kris M.
    Baker, Howard J.
    Hall, Denis R.
    Stoltz, Nick G.
    Petroff, Pierre M.
    Warburton, Richard J.
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 110 (05)
  • [5] Polariton Boxes in a Tunable Fiber Cavity
    Besga, Benjamin
    Vaneph, Cyril
    Reichel, Jakob
    Esteve, Jerome
    Reinhard, Andreas
    Miguel-Sanchez, Javier
    Imamoglu, Atac
    Volz, Thomas
    [J]. PHYSICAL REVIEW APPLIED, 2015, 3 (01):
  • [6] Quantum information processing with semiconductor macroatoms
    Biolatti, E
    Iotti, RC
    Zanardi, P
    Rossi, F
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (26) : 5647 - 5650
  • [7] Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks
    Bogdanovic, Stefan
    van Dam, Suzanne B.
    Bonato, Cristian
    Coenen, Lisanne C.
    Zwerver, Anne-Marije J.
    Hensen, Bas
    Liddy, Madelaine S. Z.
    Fink, Thomas
    Reiserer, Andreas
    Loncar, Marko
    Hanson, Ronald
    [J]. APPLIED PHYSICS LETTERS, 2017, 110 (17)
  • [8] Quantum nanophotonics with group IV defects in diamond
    Bradac, Carlo
    Gao, Weibo
    Forneris, Jacopo
    Trusheim, Matthew E.
    Aharonovich, Igor
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [9] Casabone B., 2020, ARXIV200108532
  • [10] Chang DE, 2014, NAT PHOTONICS, V8, P685, DOI [10.1038/NPHOTON.2014.192, 10.1038/nphoton.2014.192]