A STRONG CONVERGENCE THEOREM FOR A PROXIMAL-TYPE ALGORITHM IN REFLEXIVE BANACH SPACES

被引:2
作者
Reich, Simeon [1 ]
Sabach, Shoham [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Banach space; Bregman projection; Legendre function; maximal monotone operator; monotone operator; proximal point algorithm; resolvent; totally convex function; TOTAL CONVEXITY; MONOTONE-OPERATORS; POINT; PROJECTION; WEAK;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a strong convergence theorem for a proximal-type algorithm which approximates (common) zeroes of maximal monotone operators in reflexive Banach spaces This algorithm employs a well-chosen convex function The behavior of the algorithm in the presence of computational errors and in the case of zero free operators is also analyzed. Finally, we mention several corollaries, variations and applications
引用
收藏
页码:471 / 485
页数:15
相关论文
共 39 条
  • [1] Ambrosetti A., 1993, PRIMER NONLINEAR ANA
  • [2] [Anonymous], 2000, TOPOL METHODS NONLIN
  • [3] Bauschke Heinz H., 1997, J. Convex Anal., V4, P27
  • [4] Projection and proximal point methods:: convergence results and counterexamples
    Bauschke, HH
    Matousková, E
    Reich, S
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (05) : 715 - 738
  • [5] Bregman monotone optimization algorithms
    Bauschke, HH
    Borwein, JM
    Combettes, PL
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (02) : 596 - 636
  • [6] A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces
    Bauschke, HH
    Combettes, PL
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (02) : 248 - 264
  • [7] Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces
    Bauschke, HH
    Borwein, JM
    Combettes, PL
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) : 615 - 647
  • [8] Bonnans J.F., 2013, PERTURBATION ANAL OP
  • [9] Bregman L. M., 1967, USSR Comput. Math. Math. Phys., V7, P200, DOI [10.1016/0041-5553(67)90040-7, DOI 10.1016/0041-5553(67)90040-7]
  • [10] INFINITE PRODUCTS OF RESOLVENTS
    BREZIS, H
    LIONS, PL
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (04) : 329 - 345