SIRT4 Regulates Fatty Acid Oxidation and Mitochondrial Gene Expression in Liver and Muscle Cells

被引:246
作者
Nasrin, Nargis [1 ]
Wu, Xiaoping [1 ]
Fortier, Eric [1 ]
Feng, Yajun [1 ]
Bare, Olivia Claire [1 ]
Chen, Sumiao [1 ]
Ren, Xianglin [1 ]
Wu, Zhidan [1 ]
Streeper, Ryan S. [1 ]
Bordone, Laura [1 ]
机构
[1] Novartis Inst BioMed Res Inc, Cardiovasc & Metab Dis Area, Cambridge, MA 02139 USA
关键词
GLUTAMATE-DEHYDROGENASE; AMINO-GROUPS; SIRTUINS; METABOLISM; GLUCOSE; RESTRICTION; PGC-1-ALPHA; ACETYLATION; INSIGHTS; NAD;
D O I
10.1074/jbc.M110.124164
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
SIRT4, a member of the sirtuin family, has been implicated in the regulation of insulin secretion by modulation of glutamate dehydrogenase. However, the role of this enzyme in the regulation of metabolism in other tissues is unknown. In this study we investigated whether depletion of SIRT4 would enhance liver and muscle metabolic functions. To do this SIRT4 was knocked down using an adenoviral shRNA in mouse primary hepatocytes and myotubes. We observed a significant increase in gene expression of mitochondrial and fatty acid metabolism enzymes in hepatocytes with reduced SIRT4 levels. SIRT4 knockdown also increased SIRT1 mRNA and protein levels both in vitro and in vivo. In agreement with the increased fatty acid oxidation (FAO) gene expression, we showed a significant increase in FAO in SIRT4 knockdown primary hepatocytes compared with control, and this effect was dependent on SIRT1. In primary myotubes, knockdown of SIRT4 resulted in increased FAO, cellular respiration, and pAMPK levels. When SIRT4 was knocked down in vivo by tail vein injection of a shRNA adenovirus, we observed a significant increase in hepatic mitochondrial and FAO gene expression consistent with the findings in primary hepatocytes. Taken together these findings demonstrate that SIRT4 inhibition increases fat oxidative capacity in liver and mitochondrial function in muscle, which might provide therapeutic benefits for diseases associated with ectopic lipid storage such as type 2 diabetes.
引用
收藏
页码:31995 / 32002
页数:8
相关论文
共 21 条
[1]   Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase [J].
Ahuja, Nidhi ;
Schwer, Bjoern ;
Carobbio, Stefania ;
Waltregny, David ;
North, Brian J. ;
Castronovo, Vincenzo ;
Maechler, Pierre ;
Verdin, Eric .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (46) :33583-33592
[2]   AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity [J].
Canto, Carles ;
Gerhart-Hines, Zachary ;
Feige, Jerome N. ;
Lagouge, Marie ;
Noriega, Lilia ;
Milne, Jill C. ;
Elliott, Peter J. ;
Puigserver, Pere ;
Auwerx, Johan .
NATURE, 2009, 458 (7241) :1056-U140
[3]  
COLMAN RF, 1966, J BIOL CHEM, V241, P3652
[4]  
COLMAN RF, 1966, J BIOL CHEM, V241, P3661
[5]   Investigating the ADP-ribosyltransferage Activity of Sirtuins with NAD Analogues and 32P-NAD [J].
Du, Jintang ;
Jiang, Hong ;
Lin, Hening .
BIOCHEMISTRY, 2009, 48 (13) :2878-2890
[6]   Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity [J].
Frye, RA .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 260 (01) :273-279
[7]   Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt [J].
Fulco, Marcella ;
Cen, Yana ;
Zhao, Po ;
Hoffman, Eric P. ;
McBurney, Michael W. ;
Sauve, Anthony A. ;
Sartorelli, Vittorio .
DEVELOPMENTAL CELL, 2008, 14 (05) :661-673
[8]   Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α [J].
Gerhart-Hines, Zachary ;
Rodgers, Joseph T. ;
Bare, Olivia ;
Lerin, Carles ;
Kim, Seung-Hee ;
Mostoslavsky, Raul ;
Alt, Frederick W. ;
Wu, Zhidan ;
Puigserver, Pere .
EMBO JOURNAL, 2007, 26 (07) :1913-1923
[9]  
Guarente L, 2007, COLD SPRING HARB SYM, V72, P483, DOI 10.1101/sqb.2007.72.024
[10]   SIRT4 inhibits glutamate dehydrogehase and opposes the effects of calorie restriction in pancreatic β cells [J].
Haigis, Marcia C. ;
Mostoslavsky, Raul ;
Haigis, Kevin M. ;
Fahie, Kamau ;
Christodoulou, Danos C. ;
Murphy, Andrew J. ;
Valenzuela, David M. ;
Yancopoulos, George D. ;
Karow, Margaret ;
Blander, Gil ;
Wolberger, Cynthia ;
Prolla, Tomas A. ;
Weindruch, Richard ;
Alt, Frederick W. ;
Guarente, Leonard .
CELL, 2006, 126 (05) :941-954