A Markov-Dobrushin Inequality for Quantum Channels

被引:9
作者
Accardi, Luigi [1 ]
Lu, Yun Gang [2 ]
Souissi, Abdessatar [3 ,4 ,5 ]
机构
[1] Univ Roma Tor Vergata, Ctr Vito Volterra, I-00133 Rome, Italy
[2] Univ Bari, Dipartimento Matemat, Via Orabona 4, I-70125 Bari, Italy
[3] Qassim Univ, Coll Business Management, Dept Accounting, Buraydah 52571, Saudi Arabia
[4] Carthage Univ, Preparatory Inst Sci & Tech Studies La Marsa, Tunis, Tunisia
[5] Univ Carthage, LR18ES45, Quantum Modeling & Mech Design, Math Phys, Carthage, Tunisia
关键词
Quantum channels; Markov-Dobrushin inequality; Markov chains; Pauli channels;
D O I
10.1142/S1230161221500189
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a quantum extension of the Markov-Dobrushin inequality. As an application, we estimate the Markov-Dobrushin constant for some classes of quantum Markov channels, in particular for the Pauli channel, widely studied in quantum information theory.
引用
收藏
页数:18
相关论文
共 17 条
[1]   TOPICS IN QUANTUM PROBABILITY [J].
ACCARDI, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 77 (03) :169-192
[2]   LOCAL PERTURBATIONS OF CONDITIONAL EXPECTATIONS [J].
ACCARDI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 72 (01) :34-69
[3]  
Accardi L., 1975, Func. Anal. Appl, V9, P1, DOI DOI 10.1007/BF01078167
[4]   Entangled Markov chains [J].
Accardi, Luigi ;
Fidaleo, Francesco .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2005, 184 (03) :327-346
[5]   Quantum Markov chains: A unification approach [J].
Accardi, Luigi ;
Souissi, Abdessatar ;
Soueidy, El Gheteb .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2020, 23 (02)
[6]   An Example of the Difference Between Quantum and Classical Random Walks [J].
Childs, Andrew M. ;
Farhi, Edward ;
Gutmann, Sam .
QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) :35-43
[7]  
Dobrushin RL., 1956, THEOR PROBAB APPL, V1, P65, DOI DOI 10.1137/1101006
[8]   The approach to equilibrium of a class of quantum dynamical semigroups [J].
Fagnola, F ;
Rebolledo, R .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1998, 1 (04) :561-572
[9]  
Moy S.C., 1954, PACIFIC J MATH, V4, P47
[10]   Generalized Dobrushin ergodicity coefficient and uniform ergodicities of Markov operators [J].
Mukhamedov, Farrukh ;
Al-Rawashdeh, Ahmed .
POSITIVITY, 2020, 24 (04) :855-890